-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSearchAgent_Post.py
241 lines (217 loc) · 8.26 KB
/
SearchAgent_Post.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
__author__ = 'yangh_000'
import random
import cPickle
class Node:
def __init__(self):
self.SValue = 0.0
self.Action = None
self.depth = None
self.Parent = None
self.Children = None
self.finalstate = False
self.AvaiShape=None
#self.numVisit=None
class Tree:
def __init__(self):
self.NumState = 0
#self.Board = None
#self.Shape = None
# self.Epsilon=0.90
self.RunTime = 0
self.NumEpisode = 0
self.reward = -0.04
self.gama = 0.9
self.RunTrail = 0
self.BestActions=[]
#model tree
self.ModelHead = Node()
self.ModelHead.Children = []
self.ModelHead.depth = 0
self.ModelHead.Action = [-1, 0, 0]
self.ModelHead.AvaiShape=[0,1,1,1,1,1,0,0,0,0]
#self.ModelHead.numVisit=0
self.ModelHead.Parent = None
def checkwin(self,child):
#boolOP=[0]*8
tmpchild=child
tmpboard=[]
presteps=[]
for i in range(0,child.depth):
tmpboard.append(tmpchild.Action)
tmpchild=tmpchild.Parent
if len(tmpboard)<4:
return 0
else:
tmpboard.reverse()
for i in range(0,len(tmpboard)):
if i>=1:
presteps.append(tmpboard[i-1])
if 6 in tmpboard[i]:
if tmpboard[i].index(6)==0:
if 2 not in tmpboard[i]:
return -1
if 1 in tmpboard[i] or 3 in tmpboard[i] or 4 in tmpboard[i] or 5 in tmpboard[i]:
return -1
if len(presteps)==0:
return -1
else:
for j in range(0,len(presteps)):
if 9 in presteps[j] and presteps[j].index(9)==0:
if presteps[j][2]!=5:
return -1
else:
#if 1 in presteps[j] or 4 in presteps[j]:
if 4 in presteps[j]:
return -1
if 3 in presteps[j] or 1 in presteps[j]:
return 1
else:
preexist=0
for k in range(0,j):
if 3 in presteps[k] or 1 in presteps[k]:
preexist+=1
if preexist==0:
return -1
else:
return 1
def Initilize(self, numepisode,numtrail):
self.NumEpisode = numepisode
self.RunTrail=numtrail
return
def AgentInit(self,runtime):
self.RunTime=runtime
#self.Board=[[0]*3]*10
#self.Shape=[0,1,1,1,1,1,0,0,0,0]
#sself.Board[0]=self.ModelHead.Action
#self.BestActions=[[0 for Bj in range(8)] for Bi in range(800)]
#self.BestActions=[]
self.InitHead()
return
def PolicyEva(self,parent):
delta=0.0
v=parent.SValue
nchild=len(parent.Children)
if nchild!=0:
pr=1.0/float(len(parent.Children))
power=parent.depth
gamapow=float(pow(self.gama,power))
statevalue=0
for i in range(0,nchild):
statevalue+=pr*(self.reward+gamapow*parent.Children[i].SValue)
parent.SValue=statevalue
for i in range(0,nchild):
self.PolicyEva(parent.Children[i])
delta=max(delta,abs(parent.SValue-v))
#ninfinit=abs(parent.SValue-v)
if delta<0.01:
return
else:
if delta>=0.01:
self.PolicyEva(parent)
def BuildTree(self,parent):
if len(parent.Children)==0:
for i in range(0,(5-parent.depth)*(4-parent.depth)*(4-parent.depth)):
choice=self.RandChoice(parent)
while self.GradContains(choice,parent)==True or self.ContainsinChildren(choice,parent.Children)==True:
choice=self.RandChoice(parent)
self.InitNode(parent,choice)
if len(parent.Children)!=0:
for i in range(0,len(parent.Children)):
if parent.Children[i].finalstate==False:
self.BuildTree(parent.Children[i])
def GradContains(self,choice,parent):
if parent.Action[0]==-1:
return False
else:
if parent.Action[0]==choice[0]:
if parent.Action[1]==choice[1] and parent.Action[2]==choice[2]:
return True
else:
self.GradContains(choice,parent.Parent)
def ContainsinChildren(self,choice,children):
for i in range(0,len(children)):
tmpchildren=children[i]
if tmpchildren.Action[0]==choice[0]:
if tmpchildren.Action[1]==choice[1] and tmpchildren.Action[2]==choice[2]:
return True
return False
def RandChoice(self,parent):
choice1=random.randint(6,9)
choice2=None
choice3=None
tmpshape=[0]*10
for i in range(0,10):
tmpshape[i]=parent.AvaiShape[i]
shapecount=tmpshape.count(1)
if shapecount<2:
print shapecount
while tmpshape[choice1]!=0:
choice1=random.randint(6,9)
choice2=random.randint(1,9)
while tmpshape[choice2]!=1:
choice2=random.randint(1,9)
tmpshape[choice2]=-1
choice3=random.randint(1,9)
while tmpshape[choice3]!=1:
choice3=random.randint(1,9)
tmpshape[choice3]=-1
tmpshape[choice1]=1
choice=[choice1,choice2,choice3]
return choice
def InitHead(self):
if len(self.ModelHead.Children)==0:
self.BuildTree(self.ModelHead)
strname="DP_posttest.txt"
f=open(strname,'wb')
cPickle.dump(self.BestActions,f)
f.close()
fname="post_testoption.txt"
f=open(fname,'w')
for i in range(0,len(self.BestActions)):
f.write(str(self.BestActions[i])+'\n')
f.close()
print strname
self.PolicyEva(self.ModelHead)
def InitNode(self,parent,choice):
newnode=Node()
newnode.depth=parent.depth+1
newnode.Action=choice
newnode.Parent=parent
newnode.Children=[]
newnode.AvaiShape=[0]*10
for i in range(0,10):
newnode.AvaiShape[i]=parent.AvaiShape[i]
newnode.AvaiShape[choice[0]]=1
newnode.AvaiShape[choice[1]]=-1
newnode.AvaiShape[choice[2]]=-1
newnode.SValue=self.FinalState(newnode)
if newnode.SValue!=0:
newnode.finalstate=True
parent.Children.append(newnode)
return
def FinalState(self,child):
boolOP=[0]*8
tmpchild=child
tmpboard=[]
for i in range(0,child.depth):
if tmpchild.Action[0]==6:
boolOP[0]=tmpchild.Action[1]
boolOP[1]=tmpchild.Action[2]
if tmpchild.Action[0]==7:
boolOP[2]=tmpchild.Action[1]
boolOP[3]=tmpchild.Action[2]
if tmpchild.Action[0]==8:
boolOP[4]=tmpchild.Action[1]
boolOP[5]=tmpchild.Action[2]
if tmpchild.Action[0]==9:
boolOP[6]=tmpchild.Action[1]
boolOP[7]=tmpchild.Action[2]
tmpchild=tmpchild.Parent
Fvalue=self.checkwin(child)
if Fvalue>0:
tmpchild=child
for i in range(0,child.depth):
tmpboard.append(tmpchild.Action)
tmpchild=tmpchild.Parent
self.BestActions.append(tmpboard)
return Fvalue