-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrb_tree.hpp
1054 lines (969 loc) · 40.7 KB
/
rb_tree.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef _RB_TREE_HPP_
#define _RB_TREE_HPP_
#include "tree_node.hpp"
#include "iterator.hpp"
#include "type_traits.hpp"
#include "associative_container_aux.hpp"
#include "memory.hpp"
// #include <memory>
namespace asp {
enum _Rb_tree_color { _S_red = false, _S_black = true };
template <typename _Tp> struct rb_tree_node;
template <typename _Tp> struct rb_tree_header;
template <typename _Value, typename _Alloc> struct rb_tree_alloc;
template <typename _Tp> struct rb_tree_iterator;
template <typename _Tp> struct rb_tree_const_iterator;
/**
* @brief red black tree
* @details
* here are 5 rules for rb_tree, which maintain the balance of rb_tree.
* rule 1: the color of each node (inner node and leaf node) is red or black.
* rule 2: the color of root node is black.
* rule 3: we regard nullptr as black node.
* rule 4: all red node's children must be black.
* rule 5: all paths from a node to its descendants (until nullptr) contain the same number of black nodes.
* @def
* black height: the number of black nodes in the path from the given node to its descendants (until nullptr)
* relationship: indicates whether the child node is left or right child of its parent.
*/
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> class rb_tree;
namespace __rb_tree__ {
template <typename _Tp> bool _S_as_black_node(const rb_tree_node<_Tp>* _x);
/**
* @brief check the rb_tree's 5 rules
*/
template <typename _Tp> int _S_check(const rb_tree_node<_Tp>* _header);
/**
* @brief black height of subtree(_s)
* @return -1 : error in black height, -2 : broken 4th rule
* */
template <typename _Tp> int _S_black_height(const rb_tree_node<_Tp>* _s, int _bh = 0);
};
template <typename _Tp> struct rb_tree_node : public bitree_node<_Tp> {
typedef bitree_node<_Tp> base;
typedef rb_tree_node<_Tp> self;
using value_type = typename base::value_type;
using pointer = typename base::pointer;
using reference = typename base::reference;
rb_tree_node() : base() {}
rb_tree_node(const self& _s) : base(_s), _color(_s._color) {}
rb_tree_node(self&& _s) : base(_s), _color(_s._color) {}
rb_tree_node(const value_type& _v) : base(_v) {}
template <typename... _Args> rb_tree_node(_Args&&... _args) : base(std::forward<_Args>(_args)...) {}
virtual ~rb_tree_node() {}
_Rb_tree_color _color;
self* _parent = nullptr;
self* _left = nullptr;
self* _right = nullptr;
using base::left_rotate;
using base::right_rotate;
static self* _S_minimum(self* _x) {
while (_x->_left != nullptr) {
_x = _x->_left;
}
return _x;
}
static self* _S_maximum(self* _x) {
while (_x->_right != nullptr) {
_x = _x->_right;
}
return _x;
}
_Rb_tree_color _M_reverse_color() {
if (_color == _Rb_tree_color::_S_red) {
_color = _Rb_tree_color::_S_black;
}
else {
_color = _Rb_tree_color::_S_red;
}
return _color;
}
};
/**
* @brief helper type to manage default initialization of node
* @details %_header manage the basic info of @rb_tree
* %_header._parent = real root node of @rb_tree
* %_header = end of traversation
* %_header._left = minium node (the leftmost node in tree)
* %_header._right = maxium node (the rightmost node in tree)
*/
template <typename _Tp> struct rb_tree_header : public bitree_header<_Tp> {
typedef bitree_header<_Tp> base;
typedef rb_tree_header<_Tp> self;
typedef rb_tree_node<_Tp> _Node;
typedef typename _Node::value_type value_type;
rb_tree_node<_Tp> _header; // bitree_header::_header override
using base::_node_count;
rb_tree_header() : base() {
_header._color = _S_red;
reset();
}
rb_tree_header(rb_tree_header&& _x) {
if (_x._header._parent != nullptr) {
move_data(_x);
}
else {
_header._color = _S_red;
reset();
}
}
void move_data(rb_tree_header& _from) {
_header._color = _from._header._color;
_header._parent = _from._header._parent;
_header._left = _from._header._left;
_header._right = _from._header._right;
// _header._parent->
this->_node_count = _from._node_count;
_from.reset();
}
void reset() {
_header._parent = nullptr;
_header._left = &_header;
_header._right = &_header;
_header._color = _S_red;
_node_count = 0;
}
};
template <typename _Value, typename _Alloc> struct rb_tree_alloc
: public _Alloc {
typedef rb_tree_node<_Value> node_type;
typedef typename node_type::base node_type_base;
typedef _Alloc elt_allocator_type;
typedef std::allocator_traits<elt_allocator_type> elt_alloc_traits;
typedef typename elt_alloc_traits::template rebind_alloc<node_type> node_allocator_type;
typedef std::allocator_traits<node_allocator_type> node_alloc_traits;
elt_allocator_type& _M_get_elt_allocator() { return *static_cast<elt_allocator_type*>(this); }
const elt_allocator_type& _M_get_elt_allocator() const { return *static_cast<const elt_allocator_type*>(this); }
node_allocator_type _M_get_node_allocator() const { return node_allocator_type(_M_get_elt_allocator()); }
node_type* _M_allocate_node(const node_type& _x) {
node_allocator_type _node_alloc = _M_get_node_allocator();
auto _ptr = node_alloc_traits::allocate(_node_alloc, 1);
node_type* _p = std::addressof(*_ptr);
node_alloc_traits::construct(_node_alloc, _p, _x.val());
return _p;
}
template <typename... _Args> node_type* _M_allocate_node(_Args&&... _args) {
node_allocator_type _node_alloc = _M_get_node_allocator();
auto _ptr = node_alloc_traits::allocate(_node_alloc, 1);
node_type* _p = std::addressof(*_ptr);
node_alloc_traits::construct(_node_alloc, _p, std::forward<_Args>(_args)...);
return _p;
}
void _M_deallocate_node(node_type* _p) {
node_allocator_type _node_alloc = _M_get_node_allocator();
node_alloc_traits::destroy(_node_alloc, _p);
node_alloc_traits::deallocate(_node_alloc, _p, 1);
}
};
template <typename _Tp> struct rb_tree_iterator {
typedef asp::bidirectional_iterator_tag iterator_category;
typedef rb_tree_node<_Tp> node_type;
typedef typename node_type::value_type value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef asp::difference_type difference_type;
typedef rb_tree_iterator<_Tp> self;
node_type* _ptr = nullptr;
rb_tree_iterator() = default;
rb_tree_iterator(node_type* _x) : _ptr(_x) {}
value_type& operator*() const { return _ptr->val(); }
value_type* operator->() const { return _ptr->valptr(); }
self& operator++() { _ptr = __bitree__::_S_bitree_node_increase(_ptr); return *this; }
self operator++(int) { self _ret = *this; _ptr = __bitree__::_S_bitree_node_increase(_ptr); return _ret; }
self& operator--() { _ptr = __bitree__::_S_bitree_node_decrease(_ptr); return *this; }
self operator--(int) { self _ret = *this; _ptr = __bitree__::_S_bitree_node_decrease(_ptr); return _ret; }
operator bool() const { return _ptr != nullptr; }
friend bool operator==(const self& _x, const self& _y) { return _x._ptr == _y._ptr; }
friend bool operator!=(const self& _x, const self& _y) { return _x._ptr != _y._ptr; }
template <typename _T> friend std::ostream& operator<<(std::ostream& os, const rb_tree_iterator<_T>& _r);
};
template <typename _Tp> struct rb_tree_const_iterator {
typedef asp::bidirectional_iterator_tag iterator_category;
typedef rb_tree_node<_Tp> node_type;
typedef typename node_type::value_type value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef asp::difference_type difference_type;
typedef rb_tree_const_iterator<_Tp> self;
typedef rb_tree_iterator<_Tp> iterator;
const node_type* _ptr = nullptr;
rb_tree_const_iterator() = default;
rb_tree_const_iterator(const node_type* _x) : _ptr(_x) {}
rb_tree_const_iterator(const iterator& _i) : _ptr(_i._ptr) {}
const value_type& operator*() const { return _ptr->val(); }
const value_type* operator->() const { return _ptr->valptr(); }
iterator _const_cast() const { return iterator(const_cast<node_type*>(_ptr)); }
self& operator++() { _ptr = __bitree__::_S_bitree_node_increase(_ptr); return *this; }
self operator++(int) { self _ret = *this; _ptr = __bitree__::_S_bitree_node_increase(_ptr); return _ret; }
self& operator--() { _ptr = __bitree__::_S_bitree_node_decrease(_ptr); return *this; }
self operator--(int) { self _ret = *this; _ptr = __bitree__::_S_bitree_node_decrease(_ptr); return _ret; }
operator bool() const { return _ptr != nullptr; }
friend bool operator==(const self& _x, const self& _y) { return _x._ptr == _y._ptr; }
friend bool operator!=(const self& _x, const self& _y) { return _x._ptr != _y._ptr; }
template <typename _T> friend std::ostream& operator<<(std::ostream& os, const rb_tree_const_iterator<_T>& _r);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp = std::less<_Key>, typename _Alloc = std::allocator<_Value>>
class rb_tree : public rb_tree_alloc<_Value, _Alloc> {
public:
typedef rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc> self;
typedef rb_tree_alloc<_Value, _Alloc> base;
typedef rb_tree_alloc<_Value, _Alloc> rbt_alloc;
typedef typename rbt_alloc::elt_allocator_type elt_allocator_type;
typedef typename rbt_alloc::elt_alloc_traits elt_alloc_traits;
typedef typename rbt_alloc::node_allocator_type node_allocator_type;
typedef typename rbt_alloc::node_alloc_traits node_alloc_traits;
typedef _Key key_type;
typedef _Comp key_compare;
typedef typename base::node_type node_type;
typedef const node_type const_node_type;
typedef typename base::node_type_base node_type_base;
typedef const node_type_base const_node_type_base;
typedef typename node_type::value_type value_type;
typedef rb_tree_iterator<value_type> iterator;
typedef rb_tree_const_iterator<value_type> const_iterator;
typedef asp::conditional_t<_UniqueKey, std::pair<iterator, bool>, iterator> ireturn_type;
typedef asso_container::type_traits<value_type, _UniqueKey> _ContainerTypeTraits;
typedef typename _ContainerTypeTraits::insert_status insert_status;
typedef typename _ContainerTypeTraits::ext_iterator ext_iterator;
typedef typename _ContainerTypeTraits::ext_value ext_value;
typedef typename _ContainerTypeTraits::mapped_type mapped_type;
typedef _ExtKey ext_key;
rb_tree_header<_Value> _m_impl;
_ExtKey _m_extract_key;
_Comp _m_key_compare;
static const value_type& _S_value(const_node_type* _x) { return _x->val(); }
static key_type _S_key(const_node_type* _x) { return _ExtKey()(_x->val()); }
static key_type _S_key(const value_type& _v) { return _ExtKey()(_v); }
template <typename _K, typename _V, typename _EK, bool _UK, typename _C, typename _A>
friend std::ostream& operator<<(std::ostream& os, const rb_tree<_K, _V, _EK, _UK, _C, _A>& _h);
public:
rb_tree() = default;
rb_tree(const self& _rbt);
virtual ~rb_tree();
template <typename _NodeGen> void _M_assign(const self& _rbt, const _NodeGen&);
template <typename _NodeGen> node_type* _M_clone_tree(const node_type* _x, node_type* _y, const _NodeGen&);
iterator begin() { return iterator(_M_leftmost()); }
const_iterator cbegin() const { return const_iterator(_M_leftmost()); }
iterator end() { return iterator(&_m_impl._header); }
const_iterator cend() const { return const_iterator(&_m_impl._header); }
size_type size() const { return _m_impl._node_count; }
bool empty() const { return _m_impl._node_count == 0; }
iterator find(const key_type& _k);
const_iterator find(const key_type& _k) const;
size_type count(const key_type& _k) const;
void clear();
ireturn_type insert(const value_type& _v);
size_type erase(const key_type& _k);
iterator lower_bound(const key_type& _k) { return _M_lower_bound(_M_begin(), _M_end(), _k); }
const_iterator lower_bound(const key_type& _k) const { return _M_lower_bound(_M_begin(), _M_end(), _k); }
iterator upper_bound(const key_type& _k) { return _M_upper_bound(_M_begin(), _M_end(), _k); }
const_iterator upper_bound(const key_type& _k) const { return _M_upper_bound(_M_begin(), _M_end(), _k); }
std::pair<iterator, iterator> equal_range(const key_type& _k);
std::pair<const_iterator, const_iterator> equal_range(const key_type& _k) const;
// used for test
int check() const;
protected:
node_type* _M_root() { return _m_impl._header._parent; }
const_node_type* _M_root() const { return _m_impl._header._parent; }
node_type* _M_leftmost() { return _m_impl._header._left; }
const_node_type* _M_leftmost() const { return _m_impl._header._left; }
node_type* _M_rightmost() { return _m_impl._header._right; }
const_node_type* _M_rightmost() const { return _m_impl._header._right; }
node_type* _M_begin() { return _m_impl._header._parent; }
const_node_type* _M_begin() const { return _m_impl._header._parent; }
node_type* _M_end() { return &_m_impl._header; }
const_node_type* _M_end() const { return &_m_impl._header; }
// return _x < _y;
bool _M_key_compare(const key_type& _x, const key_type& _y) const { return _m_key_compare(_x, _y); }
/**
* @brief find the first node (_i) \ge than _k in _x subtree. _S_key(_i) >= _k
* @return return _y if all nodes are less than _k
*/
iterator _M_lower_bound(node_type* _x, node_type* _y, const key_type& _k);
const_iterator _M_lower_bound(const node_type* _x, const node_type* _y, const key_type& _k) const;
/**
* @brief find the first node (_i) greater than _k in range _x subtree, _k < _S_key(_i)
* @return return _y if all nodes are \le than _k
*/
iterator _M_upper_bound(node_type* _x, node_type* _y, const key_type& _k);
const_iterator _M_upper_bound(const node_type* _x, const node_type* _y, const key_type& _k) const;
/**
* @brief find a suitable leaf node to insert.
* @returns %second : inserted position. if nullptr, %first is the %_k position.
* @details iterative lookup for a suitble lead node to insert.
*/
std::pair<node_type*, node_type*> _M_insert_unique_position(const key_type& _k);
// @brief find a suitable leaf node to insert.
node_type* _M_insert_multi_position(const key_type& _k);
// @brief unique_insert
std::pair<iterator, bool> _M_insert(const value_type& _v, asp::true_type);
// @brief multi_insert
iterator _M_insert(const value_type& _v, asp::false_type);
size_type _M_erase(const_iterator _p);
size_type _M_erase(const_iterator _first, const_iterator _last);
// erase subtree directly, without rebalancing
void _M_erase_subtree(node_type* _s);
private:
/**
* @brief insert %_x as child of %_s in binary tree.
*/
void _M_insert_rebalance(node_type* _p, node_type* _x);
/**
* @brief erase %_s in %_header's binary tree.
* @return the node should be deallocated.
*/
node_type* _M_erase_rebalance(node_type* const _s);
};
/// rb_tree private implement
/**
* @details
* - insertion
* %_x->_color = _S_red, and insert.
* - rebalance
* %_x->_color == _S_red
* == %_x is the current node, of which color is always red. (no matter in insertion or iteration) ==
* case 1: %_x == %_root, just black it.
* case 2: %_x->_parent->_color == _S_black, just done.
* case 3: (%_x->_parent->_color == _S_red), divided into 2 cases: (by uncle node's color)
* (infer that _xpp->_color == _S_black)
* name uncle node as (_y), grandparent node as (_xpp)
* case 3.1: _y->_color == _S_red
* black _x->_parent and _y, red _xpp. and continue to iterate with _xpp as _x
* case 3.2: _y->_color == _S_black (only appear during iteration)
* case 3.2.1: relationship between (_x, _x->_parent) and (_x->_parent, _xpp) is different.
* let _x point to its parent, and rotate _x, transform into the latter case (case 3.2.2).
* case 3.2.2: relationship between (_x, _x->_parent) and (_x->_parent, _xpp) is identical.
* reverse the color of _x->_parent and _xpp, and rotate _xpp.
*
* the details for case 3.1:
* the color of _x and _x->_parent are all red, which breaks the 4th rule.
* thus, we black _x->_parent and _y, red _xpp, in order to keep the black height in subtree (_xpp as root).
* due to _xpp->_color is red, we may break the 4th rule (_xpp->_parent->_color may be red, too), so continue to iteration.
* the details for case 3.2:
* the current node's color is always red! the purpose of adjustment is to maintain the 4th rule.
*/
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_insert_rebalance(node_type* _p, node_type* _x) -> void {
// node_type& _header = _m_impl._header;
// node_type*& _root = _header._parent;
node_type& _header = _m_impl._header;
node_type*& _root = _header._parent;
// initialization
_x->_parent = _p;
_x->_left = nullptr;
_x->_right = nullptr;
_x->_color = _S_red;
// insert
bool _insert_left = (
_p == _M_end() ||
_M_key_compare(_S_key(_x), _S_key(_p))
);
if (_insert_left) {
_p->_left = _x;
if (_p == &_header) {
_header._parent = _x;
_header._right = _x;
}
else if (_p == _header._left) {
_header._left = _x;
}
}
else {
_p->_right = _x;
if (_p == _header._right) {
_header._right = _x;
}
}
// rebalance
while (_x != _root && _x->_parent->_color == _S_red) { // break in case 1 & 2
node_type* const _xpp = _x->_parent->_parent;
if (_x->_parent == _xpp->_left) {
node_type* const _y = _xpp->_right; // uncle node
if (_y != nullptr && _y->_color == _S_red) { // case 3.1
_x->_parent->_color = _S_black;
_y->_color = _S_black;
_xpp->_color = _S_red;
_x = _xpp;
}
else { // case 3.2
if (_x == _x->_parent->_right) { // case 3.2.1
_x = _x->_parent;
__bitree__::_S_left_rotate(_x, &_m_impl._header);
}
// case 3.2.2
_x->_parent->_color = _S_black;
_xpp->_color = _S_red;
__bitree__::_S_right_rotate(_xpp, &_m_impl._header);
}
}
else {
node_type* const _y = _xpp->_left; // uncle node
if (_y != nullptr && _y->_color == _S_red) { // case 3.1
_x->_parent->_color = _S_black;
_y->_color = _S_black;
_xpp->_color = _S_red;
_x = _xpp;
}
else { // case 3.2
if (_x == _x->_parent->_left) { // case 3.2.1
_x = _x->_parent;
__bitree__::_S_right_rotate(_x, &_m_impl._header);
}
// case 3.2.2
_x->_parent->_color = _S_black;
_xpp->_color = _S_red;
__bitree__::_S_left_rotate(_xpp, &_m_impl._header);
}
}
}
_root->_color = _S_black;
};
/**
* @details
* - deletion:
* delete node as a normal binary tree.
* to leaf node, delete directly.
* to node with single child, delete and let its child take its place.
* to node with two child, swap it and its successor node (with less than one child), and delete.
* - rebalance:
* case 1: %_y->_color == _S_red, done.
* // iteration cases
* case 2: %_x->_color == _S_red, black it and done.
* case 3: %_x == _root, done.
* case 4: (%_x != _root, %_x->_color != _S_red), divided into 4 cases:
* // black height of _x subtree is less than its sibling node.
* // suppose that %_x == _x_parent->_left, vice versa
* // name %_x 's sibling node as %_w
* case 4.1: %_w->_color == _S_red.
* reverse the color of %_w & %_x_parent, and left rotate the %_x_parent.
* (transform into case 4.2, 4.3, 4.4)
* case 4.2: %_w->_left->_color == _S_black, %_w->_right->_color == _S_black.
* red %_w, and iterate with _x_parent as _x
* case 4.3: %_w->_left->_color == _S_red, %_w->_right->_color == _S_black.
* red %_w, black %_w->_left, and right rotate %_w
* (transform into case 4.4)
* case 4.4: %_w->_left->_color == _S_black, %_w->_right->_color == _S_red.
* %_w->_color = _x_parent->_color, red %_w->_right, black %_x_parent
* and left rotate %_x_parent.
* notice that, the black height of _x_parent subtree hasn't changed, so break directly.
*/
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_erase_rebalance(node_type* const _s) -> node_type* {
node_type& _header = _m_impl._header;
node_type*& _root = _header._parent;
node_type*& _leftmost = _header._left;
node_type*& _rightmost = _header._right;
node_type* _y = _s; // node to delete
node_type* _x = nullptr; // the child of %_y
node_type* _x_parent = nullptr; // the parent of %_x (not %_y)
if (_s->_left == nullptr) {
_x = _s->_right;
}
else {
if (_s->_right == nullptr) {
_x = _s->_left;
}
else {
_y = __bitree__::_S_bitree_node_increase(_y); // successor node of %_s
_x = _y->_right;
}
}
// %_x may be nullptr
// relink and separate out %_s
if (_y != _s) { // swap _s and its successor node. replace _s with _y, and _y = _s
// cope _s->_left. // _y must in the right subtree of _s, _y->_left == nullptr
_s->_left->_parent = _y;
_y->_left = _s->_left;
if (_y != _s->_right) { // cope _s->_right
_x_parent = _y->_parent;
if (_x != nullptr) _x->_parent = _y->_parent;
_y->_parent->_left = _x; // %_y must be a left child.
_y->_right = _s->_right;
_s->_right->_parent = _y;
}
else {
_x_parent = _y;
}
// cope _s->_parent
if (_s == _root) {
_root = _y;
}
else if (_s->_parent->_left == _s) {
_s->_parent->_left = _y;
}
else {
_s->_parent->_right = _y;
}
_y->_parent = _s->_parent;
std::swap(_y->_color, _s->_color);
_y = _s;
}
else { // _y == _s, _s owns less than one child.
_x_parent = _s->_parent;
if (_x != nullptr) {
_x->_parent = _s->_parent;
}
// cope %_s->_parent
if (_s == _root) {
_root = _x;
}
else {
if (_s->_parent->_left == _s) {
_s->_parent->_left = _x;
}
else {
_s->_parent->_right = _x;
}
}
// update left/right most
if (_leftmost == _s) {
if (_s->_right == nullptr) {
_leftmost = _s->_parent;
}
else {
_leftmost = __bitree__::_S_minimum(_x);
}
}
if (_rightmost == _s) {
if (_s->_left == nullptr) {
_rightmost = _s->_parent;
}
else {
_rightmost = __bitree__::_S_maximum(_x);
}
}
}
/**
* @details
* %_y now point to the node to delete, which has been separated out.
* no matter with %_y and %_s in rebalance.
* %_x was the child of %_y
* if (_x) _x->_parent == _x_parent;
*/
// rebalance
if (_y->_color != _S_red) {
// because %_y->_color == _S_black, so the sibling node of %_x can't be nullptr
while (_x != _root && __rb_tree__::_S_as_black_node(_x)) {
if (_x == _x_parent->_left) {
node_type* _w = _x_parent->_right; // the sibling node of _x
if (_w->_color == _S_red) { // case 4.1
_w->_color = _S_black;
_x_parent->_color = _S_red;
__bitree__::_S_left_rotate(_x_parent, &_m_impl._header);
_w = _x_parent->_right; // new sibling node of %_x
}
// %_w->_color == _S_black
if (__rb_tree__::_S_as_black_node(_w->_left) && __rb_tree__::_S_as_black_node(_w->_right)) { // case 4.2
_w->_color = _S_red;
_x = _x_parent;
_x_parent = _x_parent->_parent;
}
else {
if (__rb_tree__::_S_as_black_node(_w->_right)) {
_w->_left->_color = _S_black;
_w->_color = _S_red;
__bitree__::_S_right_rotate(_w, &_m_impl._header);
_w = _x_parent->_right;
}
_w->_color = _x_parent->_color;
_x_parent->_color = _S_black;
if (_w->_right != nullptr) {
_w->_right->_color = _S_black;
}
__bitree__::_S_left_rotate(_x_parent, &_m_impl._header);
break;
}
}
else { // same as above
node_type* _w = _x_parent->_left;
if (_w->_color == _S_red) {
_w->_color = _S_black;
_x_parent->_color = _S_red;
__bitree__::_S_right_rotate(_x_parent, &_m_impl._header);
_w = _x_parent->_left;
}
if (__rb_tree__::_S_as_black_node(_w->_right) && __rb_tree__::_S_as_black_node(_w->_left)) {
_w->_color = _S_red;
_x = _x_parent;
_x_parent = _x_parent->_parent;
}
else {
if (__rb_tree__::_S_as_black_node(_w->_left)) {
_w->_right->_color = _S_black;
_w->_color = _S_red;
__bitree__::_S_left_rotate(_w, &_m_impl._header);
_w = _x_parent->_left;
}
_w->_color = _x_parent->_color;
_x_parent->_color = _S_black;
if (_w->_left != nullptr) {
_w->_left->_color = _S_black;
}
__bitree__::_S_right_rotate(_x_parent, &_m_impl._header);
break;
}
}
}
if (_x != nullptr) _x->_color = _S_black;
}
return _y;
};
/// rb_tree protected implement
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_lower_bound(node_type* _x, node_type* _y, const key_type& _k)
-> iterator {
while (_x != nullptr) {
if (_M_key_compare(_S_key(_x), _k)) {
_x = _x->_right;
}
else {
_y = _x;
_x = _x->_left;
}
}
return iterator(_y);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_lower_bound(const node_type* _x, const node_type* _y, const key_type& _k) const
-> const_iterator {
while (_x != nullptr) {
if (_M_key_compare(_S_key(_x), _k)) {
_x = _x->_right;
}
else {
_y = _x;
_x = _x->_left;
}
}
return const_iterator(_y);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_upper_bound(node_type* _x, node_type* _y, const key_type& _k)
-> iterator {
while (_x != nullptr) {
if (_M_key_compare(_k, _S_key(_x))) {
_y = _x;
_x = _x->_left;
}
else {
_x = _x->_right;
}
}
return iterator(_y);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_upper_bound(const node_type* _x, const node_type* _y, const key_type& _k) const
-> const_iterator {
while (_x != nullptr) {
if (_M_key_compare(_k, _S_key(_x))) {
_y = _x;
_x = _x->_left;
}
else {
_x = _x->_right;
}
}
return const_iterator(_y);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_insert_unique_position(const key_type& _k) -> std::pair<node_type*, node_type*> {
typedef std::pair<node_type*, node_type*> _Res;
node_type* _x = _M_begin();
node_type* _y = _M_end();
bool _comp_res;
while (_x != nullptr) {
_y = _x;
_comp_res = _M_key_compare(_k, _S_key(_x));
_x = _comp_res ? _x->_left : _x->_right;
}
// _S_key(_y) is the closest to %_k
// the new node should be inserted to the left or right side of node(_y)
// depending on %_comp_res
// if %_comp_res, %_k < _S_key(_y); or %_k >= _S_key(_y)
iterator _j = iterator(_y);
if (_comp_res) {
if (_j == begin()) { // %_k not found
return _Res(_x, _y);
}
--_j; // point to the previous node of %_y (notice that %_k < _S_key(_y))
}
// if %_k not exist in tree, _S_key(*_j) must be less (not equal) than %_k
if (_M_key_compare(_S_key(_j._ptr), _k)) {
return _Res(_x, _y);
}
return _Res(_j._ptr, nullptr);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_insert_multi_position(const key_type& _k) -> node_type* {
node_type* _x = _M_begin();
node_type* _y = _M_end();
bool _comp_res;
while (_x != nullptr) {
_y = _x;
_comp_res = _M_key_compare(_k, _S_key(_x));
_x = _comp_res ? _x->_left : _x->_right;
}
return _y;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_insert(const value_type& _v, asp::true_type) -> std::pair<iterator, bool> {
std::pair<node_type*, node_type*> _res = _M_insert_unique_position(_S_key(_v));
if (_res.second != nullptr) {
node_type* _x = this->_M_allocate_node(_v);
_M_insert_rebalance(_res.second, _x);
++_m_impl._node_count;
return std::make_pair(iterator(_x), true);
}
return std::make_pair(iterator(_res.first), false);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_insert(const value_type& _v, asp::false_type) -> iterator {
node_type* _res = _M_insert_multi_position(_S_key(_v));
node_type* _x = this->_M_allocate_node(_v);
_M_insert_rebalance(_res, _x);
++_m_impl._node_count;
return iterator(_x);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_erase(const_iterator _p) -> size_type {
node_type* _s = _M_erase_rebalance(const_cast<node_type*>(_p._ptr));
this->_M_deallocate_node(_s);
--_m_impl._node_count;
return 1;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_erase(const_iterator _first, const_iterator _last) -> size_type {
size_type _ret = 0;
if (_first == cbegin() && _last == cend()) {
_ret = size();
clear();
}
else {
while (_first != _last) {
_M_erase(_first++);
++_ret;
}
}
return _ret;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_erase_subtree(node_type* _s) -> void {
while (_s != nullptr) {
_M_erase_subtree(_s->_right);
node_type* _p = _s->_left;
this->_M_deallocate_node(_s);
_s = _p;
}
};
/// rb_tree public implement
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::rb_tree(const self& _rbt) {
_M_assign(_rbt, [this](const node_type* _n) -> node_type* {
node_type* _p = this->_M_allocate_node(*_n);
_p->_parent = nullptr; _p->_left = nullptr; _p->_right = nullptr;
_p->_color = _n->_color;
return _p;
});
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::~rb_tree() {
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
template <typename _NodeGen> void rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_assign(const self& _rbt, const _NodeGen& _gen) {
_m_impl.reset();
if (_rbt._M_begin() == nullptr) { return; }
_m_impl._node_count = _rbt.size();
node_type* _root = _M_clone_tree(_rbt._M_begin(), _M_end(), _gen);
_m_impl._header._parent = _root;
_m_impl._header._left = __bitree__::_S_minimum(_root);
_m_impl._header._right = __bitree__::_S_maximum(_root);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc>
template <typename _NodeGen> auto rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>
::_M_clone_tree(const node_type* _x, node_type* _p, const _NodeGen& _gen) -> node_type* {
node_type* _top = _gen(_x);
_top->_parent = _p;
if (_x->_left != nullptr) {
_top->_left = _M_clone_tree(_x->_left, _top, _gen);
}
if (_x->_right != nullptr) {
_top->_right = _M_clone_tree(_x->_right, _top, _gen);
}
return _top;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::find(const key_type& _k)
-> iterator {
iterator _j = _M_lower_bound(_M_begin(), _M_end(), _k);
return (_j == end() || _M_key_compare(_k, _S_key(_j._ptr))) ? end() : _j;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::find(const key_type& _k) const
-> const_iterator {
const_iterator _j = _M_lower_bound(_M_begin(), _M_end(), _k);
return (_j == cend() || _M_key_compare(_k, _S_key(_j._ptr))) ? cend() : _j;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::count(const key_type& _k) const
-> size_type {
std::pair<const_iterator, const_iterator> _res = equal_range(_k);
const size_type _n = asp::distance(_res.first, _res.second);
return _n;
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::clear()
-> void {
_M_erase_subtree(_M_begin());
_m_impl.reset();
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::insert(const value_type& _v)
-> ireturn_type {
return this->_M_insert(_v, asp::bool_t<_UniqueKey>());
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::erase(const key_type& _k)
-> size_type {
std::pair<const_iterator, const_iterator> _p = equal_range(_k);
return this->_M_erase(_p.first, _p.second);
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::equal_range(const key_type& _k)
-> std::pair<iterator, iterator> {
node_type* _x = _M_begin();
node_type* _y = _M_end();
while (_x != nullptr) {
if (_M_key_compare(_S_key(_x), _k)) {
_x = _x->_right;
}
else if (_M_key_compare(_k, _S_key(_x))) {
_y = _x, _x = _x->_left;
}
else { // _S_key(_x) == _k
node_type* _xu = _x;
node_type* _yu = _y;
_y = _x, _x = _x->_left;
_xu = _xu->_right;
return std::make_pair(
iterator(_M_lower_bound(_x, _y, _k)),
iterator(_M_upper_bound(_xu, _yu, _k)));
}
}
return std::make_pair(iterator(_y), iterator(_y));
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::equal_range(const key_type& _k) const
-> std::pair<const_iterator, const_iterator> {
const node_type* _x = _M_begin();
const node_type* _y = _M_end();
while (_x != nullptr) {
if (_M_key_compare(_S_key(_x), _k)) {
_x = _x->_right;
}
else if (_M_key_compare(_k, _S_key(_x))) {
_y = _x, _x = _x->_left;
}
else { // _S_key(_x) == _k
const node_type* _xu = _x;
const node_type* _yu = _y;
_y = _x, _x = _x->_left;
_xu = _xu->_right;
return std::make_pair(
const_iterator(_M_lower_bound(_x, _y, _k)),
const_iterator(_M_upper_bound(_xu, _yu, _k)));
}
}
return std::make_pair(const_iterator(_y), const_iterator(_y));
};
template <typename _Key, typename _Value, typename _ExtKey, bool _UniqueKey, typename _Comp, typename _Alloc> auto
rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc>::check() const -> int {
typedef rb_tree<_Key, _Value, _ExtKey, _UniqueKey, _Comp, _Alloc> rb_tree_t;
auto _bt_check = __bitree__::_S_check<_Comp, typename rb_tree_t::ext_key>(&_m_impl._header, _m_impl._node_count);
auto _rb_check = __rb_tree__::_S_check(&_m_impl._header);
return _bt_check + (_rb_check>0 ? 100 : 0) + _rb_check;
};
/// output implement
template <typename _K, typename _V, typename _EK, bool _UK, typename _C, typename _A>
std::ostream& operator<<(std::ostream& os, const rb_tree<_K, _V, _EK, _UK, _C, _A>& _r) {
os << '[';
for (auto p = _r.cbegin(); p != _r.cend();) {
os << p;
if (++p != _r.cend()) {
os << ", ";
}
}
os << ']';
return os;
};
template <typename _T> std::ostream& operator<<(std::ostream& os, const rb_tree_iterator<_T>& _r) {
if (_r)
os << obj_string::_M_obj_2_string(*_r);
else
os << "null";
return os;
};
template <typename _T> std::ostream& operator<<(std::ostream& os, const rb_tree_const_iterator<_T>& _r) {
if (_r)
os << obj_string::_M_obj_2_string(*_r);