-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgradio_hico.py
272 lines (219 loc) · 11.2 KB
/
gradio_hico.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import gradio as gr
import numpy as np
import cv2
import pandas as pd
import utils
import pdb
import PIL
from PIL import Image, ImageFont, ImageDraw
import json
import os
import torch
import copy
import datetime
SIZE_TO_CLICK_SIZE = {
1024: 8,
512: 5,
256: 2
}
save_date_sec = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_dir = "./result-layout/"
from diffusers import ControlNetModel, UniPCMultistepScheduler, DPMSolverMultistepScheduler, StableDiffusionHicoNetLayoutPipeline
base_model_path = ""
common = ""
controlnet_path = ""
HiCoNet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float32)
pipe = StableDiffusionHicoNetLayoutPipeline.from_pretrained(
base_model_path, controlnet=[HiCoNet], torch_dtype=torch.float32
)
pipe.enable_attention_slicing()
#
# speed up diffusion process with faster scheduler and memory optimization
#pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed or when using Torch 2.0.
#pipe.enable_xformers_memory_efficient_attention()
# memory optimization.
#pipe.enable_model_cpu_offload()
pipe.to("cuda")
#def get_demo(layout_to_image_generation_fn, cfg, model_fn, noise_schedule):
def get_demo():
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255), (255, 0, 255), (128, 0, 0), (0, 128, 0),
(0, 0, 128), (128, 128, 0), (0, 128, 128), (128, 0, 128), (64, 0, 0), (0, 64, 0), (0, 0, 64)]
def layout_to_image_generation(layout_bbox, layout_class, caption, negative_caption=None, classifier_free_scale=1.0, steps=50, seed=23, save_name="./demo_case"):
base_bbox = copy.deepcopy(layout_bbox)
base_class = copy.deepcopy(layout_class)
image = np.zeros((512, 512, 3))
base_bbox = np.array(base_bbox)
#base_bbox[:,2:] += base_bbox[:,:2] # x,y,w,h -> x1,y1,x2,y2
base_bbox = np.insert(base_bbox, obj=0, values=[0,0,512,512], axis=0)
base_class.insert(0, caption)
# gen condition image
list_cond_image = []
#cond_image = np.zeros_like(r_image, dtype=np.uint8)
cond_image = np.zeros((512, 512))
list_cond_image.append(cond_image)
for iit in range(1, len(base_bbox)):
dot_bbox = base_bbox[iit]
dx1, dy1, dx2, dy2 = [int(xx) for xx in dot_bbox]
#cond_image = np.zeros_like(r_image, dtype=np.uint8)
cond_image = np.zeros((512, 512))
cond_image[dy1:dy2, dx1:dx2] = 255
#cond_image[dy1:dy2, dx1:dx2] = 1
list_cond_image.append(cond_image)
obj_cond_image = np.stack(list_cond_image, axis=0)
layo_prompt = base_class
layo_bbox = torch.FloatTensor(base_bbox)
layo_cond = torch.FloatTensor(obj_cond_image)
list_cond_image_pil = [PIL.Image.fromarray(dot_cond).convert('RGB') for dot_cond in list_cond_image]
generator = torch.manual_seed(seed)
caption = common + caption
print (caption)
image = pipe(
caption, layo_prompt, guess_mode=False, generator=generator, negative_prompt=negative_caption,
num_inference_steps=steps, image=list_cond_image_pil, guidance_scale=classifier_free_scale,
width=512, height=512
).images[0]
np_image = np.array(image)
#return np_image
save_date_sec = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
path_gen_save_base = save_dir + save_name + "_" + save_date_sec +"_gen_base.png"
path_gen_save_bbox = save_dir + save_name + "_" + save_date_sec +"_gen_bbox.png"
image.save(path_gen_save_base)
rect_image = draw_image(np_image/255, layout_bbox, layout_class, path_gen_save_bbox)
return rect_image
def clear_point(image, points):
image = np.ones((512, 512, 3), dtype=np.uint8) * 100
points['handle'] = []
points['target'] = []
return image, points
def save_point(points, image, size):
src_point = points['handle']
dst_point = points['target']
#print ('[H, W]', src_point, dst_point)
for i in range(len(src_point)):
bbox_lf = src_point[i]
bbox_rd = dst_point[i]
print ("bbox %s, coord: " % i, bbox_lf, bbox_rd)
def draw_image(image, obj_bbox, obj_class, img_save):
dw_img = PIL.Image.fromarray(np.uint8(image * 255))
draw = PIL.ImageDraw.Draw(dw_img)
color = tuple(np.random.randint(0, 255, size=3).tolist())
#draw.rectangle([100, 100, 300, 300], outline = (0, 255, 255), fill = (255, 0, 0), width = 10)
for iix in range(len(obj_bbox)):
rec = obj_bbox[iix]
d_rec = [int(xx) for xx in rec]
draw.rectangle(d_rec, outline = color, width = 3)
text = obj_class[iix]
font = ImageFont.truetype("./models_ckpt/font/msyh.ttf", size=10)
draw.text((d_rec[0], d_rec[1]), text, font = font, fill="red", align="left")
dw_img.save(img_save)
return dw_img
def save_layout_data_func(image_caption, custom_layout_dataframe, num_obj, points, size, save_name="demo_case"):
num_obj = int(num_obj)
out_data = []
#out_data.append(custom_layout_dataframe['obj_caption'][0]) # caption
out_data.append(image_caption) # caption
out_data.append(num_obj)
out_data.append([size, size])
cur_dir = os.getcwd()
save_date_sec = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
path_json_save = save_dir + save_name + "_" + save_date_sec + ".json"
path_image_save = save_dir + save_name + "_" + save_date_sec + "_mask.png"
out_data.append(path_image_save)
print ("object numbers : %s" % num_obj)
src_point = points['handle']
dst_point = points['target']
obj_bbox = []
obj_class = []
dot_info = []
for i in range(num_obj):
print (i, custom_layout_dataframe['obj_caption'][i], src_point[i], dst_point[i])
dot_caption = custom_layout_dataframe['obj_caption'][i]
bbox_lf = src_point[i]
bbox_rd = dst_point[i]
obj_bbox.append(bbox_lf + bbox_rd)
obj_class.append(dot_caption)
box_wh = list(map(lambda x: x[0]-x[1], zip(bbox_rd, bbox_lf)))
dot_bbox = bbox_lf + box_wh
dot_info.append([dot_caption, dot_bbox]) # [x, y w, h]
out_data.append(dot_info)
with open(path_json_save, "w", encoding="utf-8") as f:
f.write(json.dumps(out_data, ensure_ascii=False, indent=4, separators=(',', ':')))
image = np.zeros((512, 512, 3))
# bbox: x1,y1, x2,y2
draw_image(image, obj_bbox, obj_class, path_image_save)
return image, obj_bbox, obj_class
def add_points_to_image(image, points, size=5):
image = utils.draw_handle_target_points(image, points['handle'], points['target'], size)
return image
def on_click(image, target_point, points, size, evt: gr.SelectData):
if target_point:
points['target'].append([evt.index[0], evt.index[1]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return image, not target_point
points['handle'].append([evt.index[0], evt.index[1]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
print (points)
return image, not target_point
with gr.Blocks(css="#btn {background: gray; color: blue; width:50px;}") as demo:
#with gr.Blocks(css="styles.css") as demo:
gr.Markdown(
"""
# LayoutDiffusion - 基础可控生成模型
Get "layout image" and then "layout-to-image generation".
step1 : image-caption, object-nums, demo-name
step2 : input region-caption
step3 : input region-point, bbox
step4 : Button Order -> "save point", "save layout image", "Generate LayoutImage"
"""
)
with gr.Row():
num_obj = gr.Slider(value=3, step=1, minimum=1, maximum=10, label="object nums")
classifier_free_scale = gr.Slider(value=1.0, minimum=0.5, maximum=10.0, step=0.5, label='Classifier free scale')
steps = gr.Slider(value=50, minimum=25, maximum=200, label='Steps')
with gr.Row():
case_name_input = gr.Textbox(placeholder="input case name", value="demo_case", label="demo name")
image_caption = gr.Textbox(placeholder="input image caption", value="An old man and his wife led a corgi for a walk on the beach in the setting sun", label="image caption")
negative_caption = gr.Textbox(placeholder="negative caption", value="", label="negative prompt")
seed = gr.Number(value=2333, precision=0, label='Seed', interactive=True)
df_num_obj = 6
df_fix = [[i, "region_prompt %s" % i] for i in range(1, df_num_obj+1)]
with gr.Row():
with gr.Column():
custom_layout_dataframe = gr.Dataframe(
value=df_fix,
headers=["obj_id", "obj_caption"],
datatype=["number", "str"],
row_count=(df_num_obj, "fixed"),
col_count=(2, "fixed"),
interactive=True,
)
with gr.Row():
with gr.Column():
with gr.Row():
layout_image = gr.Image(label='Layout Image', shape=(512, 512), value=np.ones((512, 512, 3), dtype=np.uint8) * 100).style(width=512, height=512)
generated_image = gr.Image(label='Generated Image', shape=(512, 512)).style(width=512, height=512)
with gr.Row():
clear_btn_point = gr.Button('clear point', elem_id="btn")
save_btn_point = gr.Button('save point', elem_id="btn")
save_layout_data = gr.Button('save layout data', elem_id="btn")
generate_button = gr.Button(value='Generate LayoutImage', elem_id="btn")
points = gr.State({'target': [], 'handle': []})
size = gr.State(512)
target_point = gr.State(False)
image_mask = gr.State()
obj_bbox = gr.State()
obj_class = gr.State()
save_btn_point.click(save_point, inputs=[points, layout_image, size])
clear_btn_point.click(clear_point, inputs=[layout_image, points], outputs=[layout_image, points])
layout_image.select(on_click, inputs=[layout_image, target_point, points, size], outputs=[layout_image, target_point])
save_layout_data.click(save_layout_data_func, inputs=[image_caption, custom_layout_dataframe, num_obj, points, size, case_name_input],
outputs=[image_mask, obj_bbox, obj_class])
generate_button.click(
fn=layout_to_image_generation, inputs=[obj_bbox, obj_class, image_caption, negative_caption, classifier_free_scale, steps, seed, case_name_input], outputs=generated_image
)
return demo
if __name__ == "__main__":
demo = get_demo()
demo.launch(server_name='0.0.0.0', server_port=9500)