-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathlosses.py
106 lines (86 loc) · 2.94 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import tensorflow.keras.backend as K
import numpy as np
import tensorflow as tf
def tversky(y_true, y_pred, alpha=0.6, beta=0.4):
"""
Function to calculate the Tversky loss for imbalanced data
:param prediction: the logits
:param ground_truth: the segmentation ground_truth
:param alpha: weight of false positives
:param beta: weight of false negatives
:param weight_map:
:return: the loss
"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
# weights
y_weights = y_true[...,1]
y_weights = y_weights[...,np.newaxis]
ones = 1
p0 = y_pred # proba that voxels are class i
p1 = ones - y_pred # proba that voxels are not class i
g0 = y_t
g1 = ones - y_t
tp = tf.reduce_sum(y_weights * p0 * g0)
fp = alpha * tf.reduce_sum(y_weights * p0 * g1)
fn = beta * tf.reduce_sum(y_weights * p1 * g0)
EPSILON = 0.00001
numerator = tp
denominator = tp + fp + fn + EPSILON
score = numerator / denominator
return 1.0 - tf.reduce_mean(score)
def accuracy(y_true, y_pred):
"""compute accuracy"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return K.equal(K.round(y_t), K.round(y_pred))
def dice_coef(y_true, y_pred, smooth=0.0000001):
"""compute dice coef"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
intersection = K.sum(K.abs(y_t * y_pred), axis=-1)
union = K.sum(y_t, axis=-1) + K.sum(y_pred, axis=-1)
return K.mean((2. * intersection + smooth) / (union + smooth), axis=-1)
def dice_loss(y_true, y_pred):
"""compute dice loss"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return 1 - dice_coef(y_t, y_pred)
def true_positives(y_true, y_pred):
"""compute true positive"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return K.round(y_t * y_pred)
def false_positives(y_true, y_pred):
"""compute false positive"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return K.round((1 - y_t) * y_pred)
def true_negatives(y_true, y_pred):
"""compute true negative"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return K.round((1 - y_t) * (1 - y_pred))
def false_negatives(y_true, y_pred):
"""compute false negative"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
return K.round((y_t) * (1 - y_pred))
def recall(y_true, y_pred):
"""compute sensitivity (recall)"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
tp = true_positives(y_t, y_pred)
fn = false_negatives(y_t, y_pred)
return K.sum(tp) / (K.sum(tp) + K.sum(fn))
def precision(y_true, y_pred):
"""compute specificity (precision)"""
y_t = y_true[...,0]
y_t = y_t[...,np.newaxis]
tn = true_negatives(y_t, y_pred)
fp = false_positives(y_t, y_pred)
return K.sum(tn) / (K.sum(tn) + K.sum(fp))
def weighted_binary_crossentropy(y_true, y_pred):
class_loglosses = K.mean(K.binary_crossentropy(y_true, y_pred), axis=[0, 1, 2])
return K.sum(class_loglosses )
# In[ ]: