-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
304 lines (268 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import sys
import time
import logging
import argparse
import torch.utils.data
from torch import optim
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from torchvision.utils import save_image, make_grid
from vq_vae.util import setup_logging_from_args
from vq_vae.auto_encoder import *
import dill
models = {
'custom': {'vqvae': VQ_CVAE,
'vqvae2': VQ_CVAE2},
'imagenet': {'vqvae': VQ_CVAE,
'vqvae2': VQ_CVAE2},
'cifar10': {'vae': CVAE,
'vqvae': VQ_CVAE,
'vqvae2': VQ_CVAE2},
'mnist': {'vae': VAE,
'vqvae': VQ_CVAE},
}
datasets_classes = {
'custom': datasets.ImageFolder,
'imagenet': datasets.ImageFolder,
'cifar10': datasets.CIFAR10,
'mnist': datasets.MNIST
}
dataset_train_args = {
'custom': {},
'imagenet': {},
'cifar10': {'train': True, 'download': True},
'mnist': {'train': True, 'download': True},
}
dataset_test_args = {
'custom': {},
'imagenet': {},
'cifar10': {'train': False, 'download': True},
'mnist': {'train': False, 'download': True},
}
dataset_n_channels = {
'custom': 3,
'imagenet': 3,
'cifar10': 3,
'mnist': 1,
}
dataset_transforms = {
'custom': transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
'imagenet': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
'cifar10': transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
'mnist': transforms.ToTensor()
}
default_hyperparams = {
'custom': {'lr': 2e-4, 'k': 512, 'hidden': 128},
'imagenet': {'lr': 2e-4, 'k': 512, 'hidden': 128},
'cifar10': {'lr': 2e-4, 'k': 10, 'hidden': 256},
'mnist': {'lr': 1e-4, 'k': 10, 'hidden': 64}
}
def main(args):
parser = argparse.ArgumentParser(description='Variational AutoEncoders')
model_parser = parser.add_argument_group('Model Parameters')
model_parser.add_argument('--model', default='vae', choices=['vae', 'vqvae'],
help='autoencoder variant to use: vae | vqvae')
model_parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
model_parser.add_argument('--hidden', type=int, metavar='N',
help='number of hidden channels')
model_parser.add_argument('-k', '--dict-size', type=int, dest='k', metavar='K',
help='number of atoms in dictionary')
model_parser.add_argument('--lr', type=float, default=None,
help='learning rate')
model_parser.add_argument('--vq_coef', type=float, default=None,
help='vq coefficient in loss')
model_parser.add_argument('--commit_coef', type=float, default=None,
help='commitment coefficient in loss')
model_parser.add_argument('--kl_coef', type=float, default=None,
help='kl-divergence coefficient in loss')
training_parser = parser.add_argument_group('Training Parameters')
training_parser.add_argument('--dataset', default='cifar10', choices=['mnist', 'cifar10', 'imagenet',
'custom'],
help='dataset to use: mnist | cifar10 | imagenet | custom')
training_parser.add_argument('--dataset_dir_name', default='',
help='name of the dir containing the dataset if dataset == custom')
training_parser.add_argument('--data-dir', default='/media/ssd/Datasets',
help='directory containing the dataset')
training_parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
training_parser.add_argument('--max-epoch-samples', type=int, default=50000,
help='max num of samples per epoch')
training_parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
training_parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
training_parser.add_argument('--gpus', default='0',
help='gpus used for training - e.g 0,1,3')
logging_parser = parser.add_argument_group('Logging Parameters')
logging_parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
logging_parser.add_argument('--results-dir', metavar='RESULTS_DIR', default='./results',
help='results dir')
logging_parser.add_argument('--save-name', default='',
help='saved folder')
logging_parser.add_argument('--data-format', default='json',
help='in which format to save the data')
args = parser.parse_args(args)
args.cuda = not args.no_cuda and torch.cuda.is_available()
dataset_dir_name = args.dataset if args.dataset != 'custom' else args.dataset_dir_name
lr = args.lr or default_hyperparams[args.dataset]['lr']
k = args.k or default_hyperparams[args.dataset]['k']
hidden = args.hidden or default_hyperparams[args.dataset]['hidden']
num_channels = dataset_n_channels[args.dataset]
save_path = setup_logging_from_args(args)
writer = SummaryWriter(save_path)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed_all(args.seed)
args.gpus = [int(i) for i in args.gpus.split(',')]
torch.cuda.set_device(args.gpus[0])
cudnn.benchmark = True
torch.cuda.manual_seed(args.seed)
model = models[args.dataset][args.model](hidden, k=k, num_channels=num_channels)
if args.cuda:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = optim.lr_scheduler.StepLR(optimizer, 10 if args.dataset == 'imagenet' else 30, 0.5,)
kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}
dataset_train_dir = os.path.join(args.data_dir, dataset_dir_name)
dataset_test_dir = os.path.join(args.data_dir, dataset_dir_name)
if args.dataset in ['imagenet', 'custom']:
dataset_train_dir = os.path.join(dataset_train_dir, 'train')
dataset_test_dir = os.path.join(dataset_test_dir, 'val')
train_loader = torch.utils.data.DataLoader(
datasets_classes[args.dataset](dataset_train_dir,
transform=dataset_transforms[args.dataset],
**dataset_train_args[args.dataset]),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets_classes[args.dataset](dataset_test_dir,
transform=dataset_transforms[args.dataset],
**dataset_test_args[args.dataset]),
batch_size=args.batch_size, shuffle=False, **kwargs)
for epoch in range(1, args.epochs + 1):
train_losses = train(epoch, model, train_loader, optimizer, args.cuda,
args.log_interval, save_path, args, writer)
test_losses = test_net(epoch, model, test_loader, args.cuda, save_path, args, writer)
for k in train_losses.keys():
name = k.replace('_train', '')
train_name = k
test_name = k.replace('train', 'test')
writer.add_scalars(name, {'train': train_losses[train_name],
'test': test_losses[test_name],
})
scheduler.step()
def train(epoch, model, train_loader, optimizer, cuda, log_interval, save_path, args, writer):
model.train()
loss_dict = model.latest_losses()
losses = {k + '_train': 0 for k, v in loss_dict.items()}
epoch_losses = {k + '_train': 0 for k, v in loss_dict.items()}
start_time = time.time()
batch_idx, data = None, None
for batch_idx, (data, _) in enumerate(train_loader):
if cuda:
data = data.cuda()
optimizer.zero_grad()
outputs = model(data)
if (epoch==args.epochs): save_latents(outputs, batch_idx, 'latent_variables/', epoch, 'train')
loss = model.loss_function(data, *outputs)
loss.backward()
optimizer.step()
latest_losses = model.latest_losses()
for key in latest_losses:
losses[key + '_train'] += float(latest_losses[key])
epoch_losses[key + '_train'] += float(latest_losses[key])
if batch_idx % log_interval == 0:
for key in latest_losses:
losses[key + '_train'] /= log_interval
loss_string = ' '.join(['{}: {:.6f}'.format(k, v) for k, v in losses.items()])
logging.info('Train Epoch: {epoch} [{batch:5d}/{total_batch} ({percent:2d}%)] time:'
' {time:3.2f} {loss}'
.format(epoch=epoch, batch=batch_idx * len(data), total_batch=len(train_loader) * len(data),
percent=int(100. * batch_idx / len(train_loader)),
time=time.time() - start_time,
loss=loss_string))
start_time = time.time()
# logging.info('z_e norm: {:.2f}'.format(float(torch.mean(torch.norm(outputs[1][0].contiguous().view(256,-1),2,0)))))
# logging.info('z_q norm: {:.2f}'.format(float(torch.mean(torch.norm(outputs[2][0].contiguous().view(256,-1),2,0)))))
for key in latest_losses:
losses[key + '_train'] = 0
if batch_idx == (len(train_loader) - 1):
save_reconstructed_images(data, epoch, outputs, save_path, 'reconstruction_train')
write_images(data, outputs, writer, 'train')
if args.dataset in ['imagenet', 'custom'] and batch_idx * len(data) > args.max_epoch_samples:
break
for key in epoch_losses:
if args.dataset != 'imagenet':
epoch_losses[key] /= (len(train_loader.dataset) / train_loader.batch_size)
else:
epoch_losses[key] /= (len(train_loader.dataset) / train_loader.batch_size)
loss_string = '\t'.join(['{}: {:.6f}'.format(k, v) for k, v in epoch_losses.items()])
logging.info('====> Epoch: {} {}'.format(epoch, loss_string))
writer.add_histogram('dict frequency', outputs[3], bins=range(args.k + 1))
model.print_atom_hist(outputs[3])
return epoch_losses
def test_net(epoch, model, test_loader, cuda, save_path, args, writer):
model.eval()
loss_dict = model.latest_losses()
losses = {k + '_test': 0 for k, v in loss_dict.items()}
i, data = None, None
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
if cuda:
data = data.cuda()
outputs = model(data)
if (epoch==args.epochs): save_latents(outputs, i, 'latent_variables/', epoch, 'test')
model.loss_function(data, *outputs)
latest_losses = model.latest_losses()
for key in latest_losses:
losses[key + '_test'] += float(latest_losses[key])
if i == 0:
write_images(data, outputs, writer, 'test')
save_reconstructed_images(data, epoch, outputs, save_path, 'reconstruction_test')
save_checkpoint(model, epoch, save_path)
if args.dataset == 'imagenet' and i * len(data) > 1000:
break
for key in losses:
if args.dataset not in ['imagenet', 'custom']:
losses[key] /= (len(test_loader.dataset) / test_loader.batch_size)
else:
losses[key] /= (i * len(data))
loss_string = ' '.join(['{}: {:.6f}'.format(k, v) for k, v in losses.items()])
logging.info('====> Test set losses: {}'.format(loss_string))
return losses
def write_images(data, outputs, writer, suffix):
original = data.mul(0.5).add(0.5)
original_grid = make_grid(original[:6])
writer.add_image(f'original/{suffix}', original_grid)
reconstructed = outputs[0].mul(0.5).add(0.5)
reconstructed_grid = make_grid(reconstructed[:6])
writer.add_image(f'reconstructed/{suffix}', reconstructed_grid)
def save_reconstructed_images(data, epoch, outputs, save_path, name):
size = data.size()
n = min(data.size(0), 8)
batch_size = data.size(0)
print("data shape in the image is {}".format(data.shape))
print("output images shape is {}".format(outputs[0].view(batch_size, size[1], size[2], size[3])[:n].shape))
print("Embedding shape is {}".format(outputs[2].shape))
print("Encoder output shape is {}".format(outputs[1].shape))
comparison = torch.cat([data[:n],
outputs[0].view(batch_size, size[1], size[2], size[3])[:n]])
save_image(comparison.cpu(),
os.path.join(save_path, name + '_' + str(epoch) + '.png'), nrow=n, normalize=True)
def save_checkpoint(model, epoch, save_path):
os.makedirs(os.path.join(save_path, 'checkpoints'), exist_ok=True)
checkpoint_path = os.path.join(save_path, 'checkpoints', f'model_{epoch}.pth')
torch.save(model.state_dict(), checkpoint_path)
def save_latents(outputs_VQCVAE, image_number, dir_path, epoch, name_string):
with open(dir_path+str(image_number)+name_string+"Epoch"+str(epoch)+'.dill', 'wb') as file:
dill.dump(outputs_VQCVAE[2], file)
file.close()
if __name__ == "__main__":
main(sys.argv[1:])