-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaveModels.py
30 lines (23 loc) · 844 Bytes
/
saveModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from joblib import dump, load
def learn_random_forest(data, target):
columns = data.columns[1:14]
X_train = data[columns]
y_train = data[target]
print(X_train)
print(y_train)
random_forest = RandomForestClassifier(n_estimators=100, random_state = 42)
random_forest.fit(X_train, y_train)
dump(random_forest,target+".joblib")
def saveModels():
data = pd.read_csv("dataTarget.csv")
targets = ["Target_Lilia", "Target_Wesley", "Target_Felipe", "Target_Madu", "Target_Jose", "Target_Roberto", "Target_Gerson"]
for target in targets:
learn_random_forest(data, target)
def main():
saveModels()
if __name__ =="__main__":
main()