-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmerge_sentences_and_generate_embeddings.py
138 lines (107 loc) · 6.69 KB
/
merge_sentences_and_generate_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from util import *
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", default='1', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--representation_source", default='nyt', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--model", default='bert-large', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--pooling_method", default='final', type=str, required=False,
help="choose which gpu to use")
parser.add_argument("--weight", default=100, type=float, required=False,
help="weight assigned to triggers")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('current device:', device)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/verb_keywords.json', 'r') as f:
framenet_verb_keywords = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/noun_keywords.json', 'r') as f:
framenet_noun_keywords = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/other_keywords.json', 'r') as f:
framenet_other_keywords = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/role_keywords.json', 'r') as f:
framenet_role_keywords = json.load(f)
all_event_types = list(framenet_verb_keywords.keys())
all_role_types = list(framenet_role_keywords.keys())
# tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
# model = BertModel.from_pretrained('bert-large-uncased').to(device)
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
model = BertModel.from_pretrained('bert-base-multilingual-uncased').to(device)
model.eval()
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-20)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/all_verb_reference_sentences.json', 'r', encoding='utf-8') as f:
all_verb_keyword_to_sentences = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/all_noun_reference_sentences.json', 'r', encoding='utf-8') as f:
all_noun_keyword_to_sentences = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/all_other_reference_sentences.json', 'r', encoding='utf-8') as f:
all_other_keyword_to_sentences = json.load(f)
with open('/shared/hzhangal/Projects/zero-event-extraction/data_ACE2005/all_role_reference_sentences.json', 'r', encoding='utf-8') as f:
all_role_keyword_to_sentences = json.load(f)
etype_to_distinct_embeddings = dict()
rtype_to_distinct_embeddings = dict()
selected_e_types = list()
selected_r_types = list()
for tmp_e_type in tqdm(all_event_types, desc='Loading predicate embeddings'):
etype_to_distinct_embeddings[tmp_e_type] = list()
for tmp_w in framenet_verb_keywords[tmp_e_type]:
for tmp_example in all_verb_keyword_to_sentences[tmp_w][:10]:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device)
if not isinstance(sent_emb, str):
etype_to_distinct_embeddings[tmp_e_type].append(sent_emb.tolist()[0])
# print(sent_emb.tolist()[0])
for tmp_w in framenet_noun_keywords[tmp_e_type]:
for tmp_example in all_noun_keyword_to_sentences[tmp_w][:10]:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device)
if not isinstance(sent_emb, str):
etype_to_distinct_embeddings[tmp_e_type].append(sent_emb.tolist()[0])
for tmp_w in framenet_other_keywords[tmp_e_type]:
for tmp_example in all_other_keyword_to_sentences[tmp_w][:10]:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device)
if not isinstance(sent_emb, str):
etype_to_distinct_embeddings[tmp_e_type].append(sent_emb.tolist()[0])
if len(etype_to_distinct_embeddings[tmp_e_type]) > 0:
selected_e_types.append(tmp_e_type)
for tmp_r_type in tqdm(all_role_types, desc='Loading argument embeddings'):
rtype_to_distinct_embeddings[tmp_r_type] = list()
for tmp_n in framenet_role_keywords[tmp_r_type]:
selected_sentences = all_role_keyword_to_sentences[tmp_n][:10]
for tmp_example in selected_sentences:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device, representation_type='mask')
if not isinstance(sent_emb, str):
rtype_to_distinct_embeddings[tmp_r_type].append(sent_emb.tolist()[0])
if len(rtype_to_distinct_embeddings[tmp_r_type]) > 0:
selected_r_types.append(tmp_r_type)
with open('data/all_reference_sentences.json', 'r', encoding='utf-8') as f:
kairos_keywords_to_sentences = json.load(f)
for tmp_e_type in tqdm(trigger_keywords, desc='Loading predicate embeddings'):
etype_to_distinct_embeddings[tmp_e_type] = list()
for tmp_w in trigger_keywords[tmp_e_type]:
for tmp_example in kairos_keywords_to_sentences[tmp_w][:10]:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device)
if not isinstance(sent_emb, str):
etype_to_distinct_embeddings[tmp_e_type].append(sent_emb.tolist()[0])
for tmp_r_type in tqdm(role_keywords, desc='Loading argument embeddings'):
rtype_to_distinct_embeddings[tmp_r_type] = list()
for tmp_n in role_keywords[tmp_r_type]:
selected_sentences = kairos_keywords_to_sentences[tmp_n][:10]
for tmp_example in selected_sentences:
sent_emb = get_represetation(tmp_example[0], (tmp_example[1], tmp_example[2]),
tokenizer, model, device, representation_type='mask')
if not isinstance(sent_emb, str):
rtype_to_distinct_embeddings[tmp_r_type].append(sent_emb.tolist()[0])
# if len(rtype_to_distinct_embeddings[tmp_r_type]) > 0:
# selected_r_types.append(tmp_r_type)
with open('data/etype_to_distinct_embeddings.json', 'w') as f:
json.dump(etype_to_distinct_embeddings, f)
with open('data/rtype_to_distinct_embeddings.json', 'w') as f:
json.dump(rtype_to_distinct_embeddings, f)
with open('data/selected_e_types.json', 'w') as f:
json.dump(selected_e_types, f)
with open('data/selected_r_types.json', 'w') as f:
json.dump(selected_r_types, f)