-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmapf_primal.py
779 lines (692 loc) · 33 KB
/
mapf_primal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
import gym
from gym import spaces
import numpy as np
from collections import OrderedDict
from threading import Lock
import sys
from matplotlib.colors import hsv_to_rgb
import random
import math
import copy
from od_mstar3 import cpp_mstar
from od_mstar3.col_set_addition import NoSolutionError, OutOfTimeError
# from gym.envs.classic_control import rendering
'''
Observation: (position maps of current agent, current goal, other agents, other goals, obstacles)
Action space: (Tuple)
agent_id: positive integer
action: {0:STILL, 1:MOVE_NORTH, 2:MOVE_EAST, 3:MOVE_SOUTH, 4:MOVE_WEST,
5:NE, 6:SE, 7:SW, 8:NW}
Reward: ACTION_COST for each action, GOAL_REWARD when robot arrives at target
'''
ACTION_COST, IDLE_COST, GOAL_REWARD, COLLISION_REWARD, FINISH_REWARD, BLOCKING_COST = -0.3, -.5, 0.0, -2., 20., -1.
opposite_actions = {0: -1, 1: 3, 2: 4, 3: 1, 4: 2, 5: 7, 6: 8, 7: 5, 8: 6}
JOINT = False # True for joint estimation of rewards for closeby agents
dirDict = {0: (0, 0), 1: (0, 1), 2: (1, 0), 3: (0, -1), 4: (-1, 0), 5: (1, 1), 6: (1, -1), 7: (-1, -1), 8: (-1, 1)}
actionDict = {v: k for k, v in dirDict.items()}
class State(object):
'''
State.
Implemented as 2 2d numpy arrays.
first one "state":
static obstacle: -1
empty: 0
agent = positive integer (agent_id)
second one "goals":
agent goal = positive int(agent_id)
'''
def __init__(self, world0, goals, diagonal, num_agents=1):
assert (len(world0.shape) == 2 and world0.shape == goals.shape)
self.state = world0.copy()
self.goals = goals.copy()
self.num_agents = num_agents
self.agents, self.agents_past, self.agent_goals = self.scanForAgents()
self.diagonal = diagonal
assert (len(self.agents) == num_agents)
def scanForAgents(self):
agents = [(-1, -1) for i in range(self.num_agents)]
agents_last = [(-1, -1) for i in range(self.num_agents)]
agent_goals = [(-1, -1) for i in range(self.num_agents)]
for i in range(self.state.shape[0]):
for j in range(self.state.shape[1]):
if (self.state[i, j] > 0):
agents[self.state[i, j] - 1] = (i, j)
agents_last[self.state[i, j] - 1] = (i, j)
if (self.goals[i, j] > 0):
agent_goals[self.goals[i, j] - 1] = (i, j)
assert ((-1, -1) not in agents and (-1, -1) not in agent_goals)
assert (agents == agents_last)
return agents, agents_last, agent_goals
def getPos(self, agent_id):
return self.agents[agent_id - 1]
def getPastPos(self, agent_id):
return self.agents_past[agent_id - 1]
def getGoal(self, agent_id):
return self.agent_goals[agent_id - 1]
def diagonalCollision(self, agent_id, newPos):
'''diagonalCollision(id,(x,y)) returns true if agent with id "id" collided diagonally with
any other agent in the state after moving to coordinates (x,y)
agent_id: id of the desired agent to check for
newPos: coord the agent is trying to move to (and checking for collisions)
'''
# def eq(f1,f2):return abs(f1-f2)<0.001
def collide(a1, a2, b1, b2):
'''
a1,a2 are coords for agent 1, b1,b2 coords for agent 2, returns true if these collide diagonally
'''
return np.isclose((a1[0] + a2[0]) / 2., (b1[0] + b2[0]) / 2.) and np.isclose((a1[1] + a2[1]) / 2.,
(b1[1] + b2[1]) / 2.)
assert (len(newPos) == 2);
# up until now we haven't moved the agent, so getPos returns the "old" location
lastPos = self.getPos(agent_id)
for agent in range(1, self.num_agents + 1):
if agent == agent_id: continue
aPast = self.getPastPos(agent)
aPres = self.getPos(agent)
if collide(aPast, aPres, lastPos, newPos): return True
return False
# try to move agent and return the status
def moveAgent(self, direction, agent_id):
ax = self.agents[agent_id - 1][0]
ay = self.agents[agent_id - 1][1]
# Not moving is always allowed
if (direction == (0, 0)):
self.agents_past[agent_id - 1] = self.agents[agent_id - 1]
return 1 if self.goals[ax, ay] == agent_id else 0
# Otherwise, let's look at the validity of the move
dx, dy = direction[0], direction[1]
if (ax + dx >= self.state.shape[0] or ax + dx < 0 or ay + dy >= self.state.shape[
1] or ay + dy < 0): # out of bounds
return -1
if (self.state[ax + dx, ay + dy] < 0): # collide with static obstacle
return -2
if (self.state[ax + dx, ay + dy] > 0): # collide with robot
return -3
# check for diagonal collisions
if (self.diagonal):
if self.diagonalCollision(agent_id, (ax + dx, ay + dy)):
return -3
# No collision: we can carry out the action
self.state[ax, ay] = 0
self.state[ax + dx, ay + dy] = agent_id
self.agents_past[agent_id - 1] = self.agents[agent_id - 1]
self.agents[agent_id - 1] = (ax + dx, ay + dy)
if self.goals[ax + dx, ay + dy] == agent_id:
return 1
elif self.goals[ax + dx, ay + dy] != agent_id and self.goals[ax, ay] == agent_id:
return 2
else:
return 0
# try to execture action and return whether action was executed or not and why
# returns:
# 2: action executed and left goal
# 1: action executed and reached goal (or stayed on)
# 0: action executed
# -1: out of bounds
# -2: collision with wall
# -3: collision with robot
def act(self, action, agent_id):
# 0 1 2 3 4
# still N E S W
direction = self.getDir(action)
moved = self.moveAgent(direction, agent_id)
return moved
def getDir(self, action):
return dirDict[action]
def getAction(self, direction):
return actionDict[direction]
# Compare with a plan to determine job completion
def done(self):
numComplete = 0
for i in range(1, len(self.agents) + 1):
agent_pos = self.agents[i - 1]
if self.goals[agent_pos[0], agent_pos[1]] == i:
numComplete += 1
return numComplete == len(self.agents) # , numComplete/float(len(self.agents))
class MAPFEnv(gym.Env):
def getFinishReward(self):
return FINISH_REWARD
metadata = {"render.modes": ["human", "ansi"]}
# Initialize env
def __init__(self, num_agents=1, observation_size=10, world0=None, goals0=None, DIAGONAL_MOVEMENT=False,
SIZE=(10, 40), PROB=(0, .5), FULL_HELP=False, blank_world=False):
"""
Args:
DIAGONAL_MOVEMENT: if the agents are allowed to move diagonally
SIZE: size of a side of the square grid
PROB: range of probabilities that a given block is an obstacle
FULL_HELP
"""
# Initialize member variables
self.num_agents = num_agents
# a way of doing joint rewards
self.individual_rewards = [0 for i in range(num_agents)]
self.observation_size = observation_size
self.SIZE = SIZE
self.PROB = PROB
self.fresh = True
self.FULL_HELP = FULL_HELP
self.finished = False
self.mutex = Lock()
self.DIAGONAL_MOVEMENT = DIAGONAL_MOVEMENT
# Initialize data structures
self._setWorld(world0, goals0, blank_world=blank_world)
if DIAGONAL_MOVEMENT:
self.action_space = spaces.Tuple([spaces.Discrete(self.num_agents), spaces.Discrete(9)])
else:
self.action_space = spaces.Tuple([spaces.Discrete(self.num_agents), spaces.Discrete(5)])
self.viewer = None
def isConnected(self, world0):
sys.setrecursionlimit(10000)
world0 = world0.copy()
def firstFree(world0):
for x in range(world0.shape[0]):
for y in range(world0.shape[1]):
if world0[x, y] == 0:
return x, y
def floodfill(world, i, j):
sx, sy = world.shape[0], world.shape[1]
if (i < 0 or i >= sx or j < 0 or j >= sy): # out of bounds, return
return
if (world[i, j] == -1): return
world[i, j] = -1
floodfill(world, i + 1, j)
floodfill(world, i, j + 1)
floodfill(world, i - 1, j)
floodfill(world, i, j - 1)
i, j = firstFree(world0)
floodfill(world0, i, j)
if np.any(world0 == 0):
return False
else:
return True
def getObstacleMap(self):
return (self.world.state == -1).astype(int)
def getGoals(self):
result = []
for i in range(1, self.num_agents + 1):
result.append(self.world.getGoal(i))
return result
def getPositions(self):
result = []
for i in range(1, self.num_agents + 1):
result.append(self.world.getPos(i))
return result
def _setWorld(self, world0=None, goals0=None, blank_world=False):
# blank_world is a flag indicating that the world given has no agent or goal positions
def getConnectedRegion(world, regions_dict, x, y):
sys.setrecursionlimit(1000000)
'''returns a list of tuples of connected squares to the given tile
this is memoized with a dict'''
if (x, y) in regions_dict:
return regions_dict[(x, y)]
visited = set()
sx, sy = world.shape[0], world.shape[1]
work_list = [(x, y)]
while len(work_list) > 0:
(i, j) = work_list.pop()
if (i < 0 or i >= sx or j < 0 or j >= sy): # out of bounds, return
continue
if (world[i, j] == -1):
continue # crashes
if world[i, j] > 0:
regions_dict[(i, j)] = visited
if (i, j) in visited: continue
visited.add((i, j))
work_list.append((i + 1, j))
work_list.append((i, j + 1))
work_list.append((i - 1, j))
work_list.append((i, j - 1))
regions_dict[(x, y)] = visited
return visited
# defines the State object, which includes initializing goals and agents
# sets the world to world0 and goals, or if they are None randomizes world
if not (world0 is None):
if goals0 is None and not blank_world:
raise Exception("you gave a world with no goals!")
if blank_world:
# RANDOMIZE THE POSITIONS OF AGENTS
agent_counter = 1
agent_locations = []
while agent_counter <= self.num_agents:
x, y = np.random.randint(0, world0.shape[0]), np.random.randint(0, world0.shape[1])
if (world0[x, y] == 0):
world0[x, y] = agent_counter
agent_locations.append((x, y))
agent_counter += 1
# RANDOMIZE THE GOALS OF AGENTS
goals0 = np.zeros(world0.shape).astype(int)
goal_counter = 1
agent_regions = dict()
while goal_counter <= self.num_agents:
agent_pos = agent_locations[goal_counter - 1]
valid_tiles = getConnectedRegion(world0, agent_regions, agent_pos[0], agent_pos[1]) # crashes
x, y = random.choice(list(valid_tiles))
if (goals0[x, y] == 0 and world0[x, y] != -1):
goals0[x, y] = goal_counter
goal_counter += 1
self.initial_world = world0.copy()
self.initial_goals = goals0.copy()
self.world = State(self.initial_world, self.initial_goals, self.DIAGONAL_MOVEMENT, self.num_agents)
return
self.initial_world = world0
self.initial_goals = goals0
self.world = State(world0, goals0, self.DIAGONAL_MOVEMENT, self.num_agents)
return
# otherwise we have to randomize the world
# RANDOMIZE THE STATIC OBSTACLES
prob = np.random.triangular(self.PROB[0], .33 * self.PROB[0] + .66 * self.PROB[1], self.PROB[1])
size = np.random.choice([self.SIZE[0], self.SIZE[0] * .5 + self.SIZE[1] * .5, self.SIZE[1]], p=[.5, .25, .25])
world = -(np.random.rand(int(size), int(size)) < prob).astype(int)
# RANDOMIZE THE POSITIONS OF AGENTS
agent_counter = 1
agent_locations = []
while agent_counter <= self.num_agents:
x, y = np.random.randint(0, world.shape[0]), np.random.randint(0, world.shape[1])
if (world[x, y] == 0):
world[x, y] = agent_counter
agent_locations.append((x, y))
agent_counter += 1
# RANDOMIZE THE GOALS OF AGENTS
goals = np.zeros(world.shape).astype(int)
goal_counter = 1
agent_regions = dict()
while goal_counter <= self.num_agents:
agent_pos = agent_locations[goal_counter - 1]
valid_tiles = getConnectedRegion(world, agent_regions, agent_pos[0], agent_pos[1])
x, y = random.choice(list(valid_tiles))
if (goals[x, y] == 0 and world[x, y] != -1):
goals[x, y] = goal_counter
goal_counter += 1
self.initial_world = world
self.initial_goals = goals
self.world = State(world, goals, self.DIAGONAL_MOVEMENT, num_agents=self.num_agents)
# Returns an observation of an agent
def _observe(self, agent_id):
assert (agent_id > 0)
top_left = (self.world.getPos(agent_id)[0] - self.observation_size // 2,
self.world.getPos(agent_id)[1] - self.observation_size // 2)
bottom_right = (top_left[0] + self.observation_size, top_left[1] + self.observation_size)
obs_shape = (self.observation_size, self.observation_size)
goal_map = np.zeros(obs_shape)
poss_map = np.zeros(obs_shape)
goals_map = np.zeros(obs_shape)
obs_map = np.zeros(obs_shape)
visible_agents = []
for i in range(top_left[0], top_left[0] + self.observation_size):
for j in range(top_left[1], top_left[1] + self.observation_size):
if i >= self.world.state.shape[0] or i < 0 or j >= self.world.state.shape[1] or j < 0:
# out of bounds, just treat as an obstacle
obs_map[i - top_left[0], j - top_left[1]] = 1
continue
if self.world.state[i, j] == -1:
# obstacles
obs_map[i - top_left[0], j - top_left[1]] = 1
if self.world.state[i, j] == agent_id:
# agent's position
poss_map[i - top_left[0], j - top_left[1]] = 1
if self.world.goals[i, j] == agent_id:
# agent's goal
goal_map[i - top_left[0], j - top_left[1]] = 1
if self.world.state[i, j] > 0 and self.world.state[i, j] != agent_id:
# other agents' positions
visible_agents.append(self.world.state[i, j])
poss_map[i - top_left[0], j - top_left[1]] = 1
for agent in visible_agents:
x, y = self.world.getGoal(agent)
min_node = (max(top_left[0], min(top_left[0] + self.observation_size - 1, x)),
max(top_left[1], min(top_left[1] + self.observation_size - 1, y)))
goals_map[min_node[0] - top_left[0], min_node[1] - top_left[1]] = 1
dx = self.world.getGoal(agent_id)[0] - self.world.getPos(agent_id)[0]
dy = self.world.getGoal(agent_id)[1] - self.world.getPos(agent_id)[1]
mag = (dx ** 2 + dy ** 2) ** .5
if mag != 0:
dx = dx / mag
dy = dy / mag
return ([poss_map, goal_map, goals_map, obs_map], [dx, dy, mag])
# Resets environment
def _reset(self, agent_id, world0=None, goals0=None):
self.finished = False
self.mutex.acquire()
# Initialize data structures
self._setWorld(world0, goals0)
self.fresh = True
self.mutex.release()
if self.viewer is not None:
self.viewer = None
on_goal = self.world.getPos(agent_id) == self.world.getGoal(agent_id)
# we assume you don't start blocking anyone (the probability of this happening is insanely low)
return self._listNextValidActions(agent_id), on_goal, False
def _complete(self):
return self.world.done()
def getAstarCosts(self, start, goal):
# returns a numpy array of same dims as self.world.state with the distance to the goal from each coord
def lowestF(fScore, openSet):
# find entry in openSet with lowest fScore
assert (len(openSet) > 0)
minF = 2 ** 31 - 1
minNode = None
for (i, j) in openSet:
if (i, j) not in fScore: continue
if fScore[(i, j)] < minF:
minF = fScore[(i, j)]
minNode = (i, j)
return minNode
def getNeighbors(node):
# return set of neighbors to the given node
n_moves = 9 if self.DIAGONAL_MOVEMENT else 5
neighbors = set()
for move in range(1, n_moves): # we dont want to include 0 or it will include itself
direction = self.world.getDir(move)
dx = direction[0]
dy = direction[1]
ax = node[0]
ay = node[1]
if (ax + dx >= self.world.state.shape[0] or ax + dx < 0 or ay + dy >= self.world.state.shape[
1] or ay + dy < 0): # out of bounds
continue
if (self.world.state[ax + dx, ay + dy] == -1): # collide with static obstacle
continue
neighbors.add((ax + dx, ay + dy))
return neighbors
# NOTE THAT WE REVERSE THE DIRECTION OF SEARCH SO THAT THE GSCORE WILL BE DISTANCE TO GOAL
start, goal = goal, start
# The set of nodes already evaluated
closedSet = set()
# The set of currently discovered nodes that are not evaluated yet.
# Initially, only the start node is known.
openSet = set()
openSet.add(start)
# For each node, which node it can most efficiently be reached from.
# If a node can be reached from many nodes, cameFrom will eventually contain the
# most efficient previous step.
cameFrom = dict()
# For each node, the cost of getting from the start node to that node.
gScore = dict() # default value infinity
# The cost of going from start to start is zero.
gScore[start] = 0
# For each node, the total cost of getting from the start node to the goal
# by passing by that node. That value is partly known, partly heuristic.
fScore = dict() # default infinity
# our heuristic is euclidean distance to goal
heuristic_cost_estimate = lambda x, y: math.hypot(x[0] - y[0], x[1] - y[1])
# For the first node, that value is completely heuristic.
fScore[start] = heuristic_cost_estimate(start, goal)
while len(openSet) != 0:
# current = the node in openSet having the lowest fScore value
current = lowestF(fScore, openSet)
openSet.remove(current)
closedSet.add(current)
for neighbor in getNeighbors(current):
if neighbor in closedSet:
continue # Ignore the neighbor which is already evaluated.
if neighbor not in openSet: # Discover a new node
openSet.add(neighbor)
# The distance from start to a neighbor
# in our case the distance between is always 1
tentative_gScore = gScore[current] + 1
if tentative_gScore >= gScore.get(neighbor, 2 ** 31 - 1):
continue # This is not a better path.
# This path is the best until now. Record it!
cameFrom[neighbor] = current
gScore[neighbor] = tentative_gScore
fScore[neighbor] = gScore[neighbor] + heuristic_cost_estimate(neighbor, goal)
# parse through the gScores
costs = self.world.state.copy()
for (i, j) in gScore:
costs[i, j] = gScore[i, j]
return costs
def astar(self, world, start, goal, robots=[]):
'''robots is a list of robots to add to the world'''
for (i, j) in robots:
world[i, j] = 1
try:
path = cpp_mstar.find_path(world, [start], [goal], 1, 5)
except NoSolutionError:
path = None
for (i, j) in robots:
world[i, j] = 0
return path
def get_blocking_reward(self, agent_id):
'''calculates how many robots the agent is preventing from reaching goal
and returns the necessary penalty'''
# accumulate visible robots
other_robots = []
other_locations = []
inflation = 10
top_left = (self.world.getPos(agent_id)[0] - self.observation_size // 2,
self.world.getPos(agent_id)[1] - self.observation_size // 2)
bottom_right = (top_left[0] + self.observation_size, top_left[1] + self.observation_size)
for agent in range(1, self.num_agents):
if agent == agent_id: continue
x, y = self.world.getPos(agent)
if x < top_left[0] or x >= bottom_right[0] or y >= bottom_right[1] or y < top_left[1]:
continue
other_robots.append(agent)
other_locations.append((x, y))
num_blocking = 0
world = self.getObstacleMap()
for agent in other_robots:
other_locations.remove(self.world.getPos(agent))
# before removing
path_before = self.astar(world, self.world.getPos(agent), self.world.getGoal(agent),
robots=other_locations + [self.world.getPos(agent_id)])
# after removing
path_after = self.astar(world, self.world.getPos(agent), self.world.getGoal(agent),
robots=other_locations)
other_locations.append(self.world.getPos(agent))
if (path_before is None and path_after is None): continue
if (path_before is not None and path_after is None): continue
if (path_before is None and path_after is not None) \
or len(path_before) > len(path_after) + inflation:
num_blocking += 1
return num_blocking * BLOCKING_COST
# Executes an action by an agent
def _step(self, action_input, episode=0):
# episode is an optional variable which will be used on the reward discounting
self.fresh = False
n_actions = 9 if self.DIAGONAL_MOVEMENT else 5
# Check action input
assert len(action_input) == 2, 'Action input should be a tuple with the form (agent_id, action)'
assert action_input[1] in range(n_actions), 'Invalid action'
assert action_input[0] in range(1, self.num_agents + 1)
# Parse action input
agent_id = action_input[0]
action = action_input[1]
# Lock mutex (race conditions start here)
self.mutex.acquire()
# get start location of agent
agentStartLocation = self.world.getPos(agent_id)
# Execute action & determine reward
action_status = self.world.act(action, agent_id)
valid_action = action_status >= 0
# 2: action executed and left goal
# 1: action executed and reached/stayed on goal
# 0: action executed
# -1: out of bounds
# -2: collision with wall
# -3: collision with robot
blocking = False
if action == 0: # staying still
if action_status == 1: # stayed on goal
reward = GOAL_REWARD
x = self.get_blocking_reward(agent_id)
reward += x
if x < 0:
blocking = True
elif action_status == 0: # stayed off goal
reward = IDLE_COST
else: # moving
if (action_status == 1): # reached goal
reward = GOAL_REWARD
elif (action_status == -3 or action_status == -2 or action_status == -1): # collision
reward = COLLISION_REWARD
elif (action_status == 2): # left goal
reward = ACTION_COST
else:
reward = ACTION_COST
self.individual_rewards[agent_id - 1] = reward
if JOINT:
visible = [False for i in range(self.num_agents)]
v = 0
# joint rewards based on proximity
for agent in range(1, self.num_agents + 1):
# tally up the visible agents
if agent == agent_id:
continue
top_left = (self.world.getPos(agent_id)[0] - self.observation_size // 2, \
self.world.getPos(agent_id)[1] - self.observation_size // 2)
pos = self.world.getPos(agent)
if pos[0] >= top_left[0] and pos[0] < top_left[0] + self.observation_size \
and pos[1] >= top_left[1] and pos[1] < top_left[1] + self.observation_size:
# if the agent is within the bounds for observation
v += 1
visible[agent - 1] = True
if v > 0:
reward = self.individual_rewards[agent_id - 1] / 2
# set the reward to the joint reward if we are
for i in range(self.num_agents):
if visible[i]:
reward += self.individual_rewards[i] / (v * 2)
# Perform observation
state = self._observe(agent_id)
# Done?
done = self.world.done()
self.finished |= done
# next valid actions
nextActions = self._listNextValidActions(agent_id, action, episode=episode)
# on_goal estimation
on_goal = self.world.getPos(agent_id) == self.world.getGoal(agent_id)
# Unlock mutex
self.mutex.release()
return state, reward, done, nextActions, on_goal, blocking, valid_action
def _listNextValidActions(self, agent_id, prev_action=0, episode=0):
available_actions = [0] # staying still always allowed
# Get current agent position
agent_pos = self.world.getPos(agent_id)
ax, ay = agent_pos[0], agent_pos[1]
n_moves = 9 if self.DIAGONAL_MOVEMENT else 5
for action in range(1, n_moves):
direction = self.world.getDir(action)
dx, dy = direction[0], direction[1]
if (ax + dx >= self.world.state.shape[0] or ax + dx < 0 or ay + dy >= self.world.state.shape[
1] or ay + dy < 0): # out of bounds
continue
if (self.world.state[ax + dx, ay + dy] < 0): # collide with static obstacle
continue
if (self.world.state[ax + dx, ay + dy] > 0): # collide with robot
continue
# check for diagonal collisions
if (self.DIAGONAL_MOVEMENT):
if self.world.diagonalCollision(agent_id, (ax + dx, ay + dy)):
continue
# otherwise we are ok to carry out the action
available_actions.append(action)
if opposite_actions[prev_action] in available_actions:
available_actions.remove(opposite_actions[prev_action])
return available_actions
def drawStar(self, centerX, centerY, diameter, numPoints, color):
outerRad = diameter // 2
innerRad = int(outerRad * 3 / 8)
# fill the center of the star
angleBetween = 2 * math.pi / numPoints # angle between star points in radians
for i in range(numPoints):
# p1 and p3 are on the inner radius, and p2 is the point
pointAngle = math.pi / 2 + i * angleBetween
p1X = centerX + innerRad * math.cos(pointAngle - angleBetween / 2)
p1Y = centerY - innerRad * math.sin(pointAngle - angleBetween / 2)
p2X = centerX + outerRad * math.cos(pointAngle)
p2Y = centerY - outerRad * math.sin(pointAngle)
p3X = centerX + innerRad * math.cos(pointAngle + angleBetween / 2)
p3Y = centerY - innerRad * math.sin(pointAngle + angleBetween / 2)
# draw the triangle for each tip.
poly = rendering.FilledPolygon([(p1X, p1Y), (p2X, p2Y), (p3X, p3Y)])
poly.set_color(color[0], color[1], color[2])
poly.add_attr(rendering.Transform())
self.viewer.add_onetime(poly)
def create_rectangle(self, x, y, width, height, fill, permanent=False):
ps = [(x, y), ((x + width), y), ((x + width), (y + height)), (x, (y + height))]
rect = rendering.FilledPolygon(ps)
rect.set_color(fill[0], fill[1], fill[2])
rect.add_attr(rendering.Transform())
if permanent:
self.viewer.add_geom(rect)
else:
self.viewer.add_onetime(rect)
def create_circle(self, x, y, diameter, size, fill, resolution=20):
c = (x + size / 2, y + size / 2)
dr = math.pi * 2 / resolution
ps = []
for i in range(resolution):
x = c[0] + math.cos(i * dr) * diameter / 2
y = c[1] + math.sin(i * dr) * diameter / 2
ps.append((x, y))
circ = rendering.FilledPolygon(ps)
circ.set_color(fill[0], fill[1], fill[2])
circ.add_attr(rendering.Transform())
self.viewer.add_onetime(circ)
def initColors(self):
c = {a + 1: hsv_to_rgb(np.array([a / float(self.num_agents), 1, 1])) for a in range(self.num_agents)}
return c
def _render(self, mode='human', close=False, screen_width=800, screen_height=800, action_probs=None):
if close == True:
return
# values is an optional parameter which provides a visualization for the value of each agent per step
size = screen_width / max(self.world.state.shape[0], self.world.state.shape[1])
colors = self.initColors()
if self.viewer == None:
self.viewer = rendering.Viewer(screen_width, screen_height)
self.reset_renderer = True
if self.reset_renderer:
self.create_rectangle(0, 0, screen_width, screen_height, (.6, .6, .6), permanent=True)
for i in range(self.world.state.shape[0]):
start = 0
end = 1
scanning = False
write = False
for j in range(self.world.state.shape[1]):
if (self.world.state[i, j] != -1 and not scanning): # free
start = j
scanning = True
if ((j == self.world.state.shape[1] - 1 or self.world.state[i, j] == -1) and scanning):
end = j + 1 if j == self.world.state.shape[1] - 1 else j
scanning = False
write = True
if write:
x = i * size
y = start * size
self.create_rectangle(x, y, size, size * (end - start), (1, 1, 1), permanent=True)
write = False
for agent in range(1, self.num_agents + 1):
i, j = self.world.getPos(agent)
x = i * size
y = j * size
color = colors[self.world.state[i, j]]
self.create_rectangle(x, y, size, size, color)
i, j = self.world.getGoal(agent)
x = i * size
y = j * size
color = colors[self.world.goals[i, j]]
self.create_circle(x, y, size, size, color)
if self.world.getGoal(agent) == self.world.getPos(agent):
color = (0, 0, 0)
self.create_circle(x, y, size, size, color)
if action_probs is not None:
n_moves = 9 if self.DIAGONAL_MOVEMENT else 5
for agent in range(1, self.num_agents + 1):
# take the a_dist from the given data and draw it on the frame
a_dist = action_probs[agent - 1]
if a_dist is not None:
for m in range(n_moves):
dx, dy = self.world.getDir(m)
x = (self.world.getPos(agent)[0] + dx) * size
y = (self.world.getPos(agent)[1] + dy) * size
s = a_dist[m] * size
self.create_circle(x, y, s, size, (0, 0, 0))
self.reset_renderer = False
result = self.viewer.render(return_rgb_array=mode == 'rgb_array')
return result
if __name__ == '__main__':
n_agents = 8
env = MAPFEnv(n_agents, PROB=(.3, .5), SIZE=(10, 11), DIAGONAL_MOVEMENT=False)
print(coordinationRatio(env))