-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathscams.py
55 lines (45 loc) · 2.02 KB
/
scams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pyspark
import json
import time
sc = pyspark.SparkContext()
sqlContext = pyspark.SQLContext(sc)
def is_good_line_tra(line):
try:
fields = line.split(',')
if len(fields) != 7:
return False
float(fields[3])
return True
except:
return False
def address_split(x):
for i in range(len(x[0])):
return (x[0][i], (x[1], x[2]))
def is_scamming(x):
if x[1][1][0] == 'Scamming':
return True
def is_phishing(x):
if x[1][1][0] == 'Phishing':
return True
def is_fICO(x):
if x[1][1][0] == 'Fake ICO':
return True
path = "/user/dma30/Project"
scams_df = sqlContext.read.option('multiLine', True).json(sc.wholeTextFiles(path).values()).drop('id', 'url', 'name','coin', 'description', 'reporter', 'ip', 'nameservers', 'subcategory')
# ([addresses], category, status)
scams_RDD = scams_df.rdd.map(address_split)
# (address i, (category, status))
lines_tra = sc.textFile('/data/ethereum/transactions')
clean_lines_tra = lines_tra.filter(is_good_line_tra)
address_val_pair = clean_lines_tra.map(lambda l: (l.split(',')[2], (float(l.split(',')[3]), time.strftime("%y.%m", time.gmtime(float(l.split(',')[6]))))))
joined_RDD = address_val_pair.join(scams_RDD)
# (to add, ((val, time), (cat, status)))
# most lucrative form of scam
key_cat = joined_RDD.map(lambda x: (x[1][1][0], x[1][0][0]))
most_lucrative_cat = key_cat.reduceByKey(lambda a,b: a+b).sortBy(lambda x: -x[1]).collect()
for rec in most_lucrative_cat:
print(rec)
# most lucrative forms of scam vs time
scmamming = joined_RDD.filter(is_scamming).map(lambda x: (x[1][0][1], x[1][0][0])).reduceByKey(lambda a,b: a+b).sortByKey(ascending=True).saveAsTextFile('scamming') # (time, total_val)
phishing = joined_RDD.filter(is_phishing).map(lambda x: (x[1][0][1], x[1][0][0])).reduceByKey(lambda a,b: a+b).sortByKey(ascending=True).saveAsTextFile('phishing')
fICO = joined_RDD.filter(is_fICO).map(lambda x: (x[1][0][1], x[1][0][0])).reduceByKey(lambda a,b: a+b).sortByKey(ascending=True).saveAsTextFile('fICO')