-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFE2008.tex
945 lines (605 loc) · 43.7 KB
/
FE2008.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/17813}{duytungct}]
Find all continuous functions $f: \mathbb R \to \mathbb R$ so that $ f(x+f(x))=f(x)$ for all $ x \in \mathbb R$.
\flushright \href{https://artofproblemsolving.com/community/c6h181337}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/246}{pbornsztein}]
If we assume the uniform continuity on $ \mathbb{R}$ (not just the continuity), then I can prove that $ f$ is constant...
So, can we deduce the uniform continuity from the functional equation (which is just to prove that $ f$ has limit in $ +\infty$ and $ -\infty$)?
Pierre.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all continuous function $ f: R \to R$ so that $ f(x + f(x)) = f(x)$ for all $ x \in R$\end{tcolorbox}
$ 1)$ First, it is easy to show with induction that $ f(x+nf(x))=f(x)$ $ \forall x\in \mathbb{R}$ and $ \forall n\in\mathbb{N}$
$ 2)$ Constant functions $ f(x)=c$ are obviously solutions.
$ 3)$ Assume it exists $ f(x)$ non-constant continuous solution. Then
It exists $ x_0<x_1$ such that $ f(x_0)\neq f(x_1)$
Let $ A=\{x>x_0$ such that $ f(x)=f(x_1)\}$
$ A\neq_\emptyset$ (since $ x_1\in A$) and $ x>x_0$ $ \forall x\in A$. Let then $ x_2=\inf(A)$.
Since $ f(x)$ is continuous, $ f(x_2)=f(x_1)$, $ x_2>x_0$ and $ \boxed{f(x)\neq f(x_1)\forall x\in[x_0,x_2)}$
Since $ f(x_2)\neq f(x_0)$, $ \exists n\neq p\in\mathbb{N}$ such that either $ x_0+nf(x_0)<x_2+pf(x_2)<x_2+nf(x_2)$, either $ x_0+nf(x_0)>x_2+pf(x_2)>x_2+pf(x_2)$
Since $ f(x)$ is continuous, so is $ x+nf(x)$, so $ \exists x_3\in(x_0,x_2)$ such that $ x_3+nf(x_3)=x_2+pf(x_2)$, so $ f(x_3+nf(x_3))=f(x_2+pf(x_2))$, and so $ f(x_3)=f(x_2)=f(x_1)$
But this is a contradiction since we know (see boxed statement above) that $ f(x)\neq f(x_1)$ $ \forall x\in[x_0,x_2)$
So the only solutions are constant functions.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/246}{pbornsztein}]
Ok, I got it!
Let $ f$ be a solution.
Clearly, $ f$ cannot be injective.
Let $ g(x)=f(x)+x$.
Let $ g^n$ denotes the $ n^{th}$ iterate of $ g$.
It is easy to verify that $ g$ is continuous and $ g^2(x)=2g(x)-x$ for all $ x$.
Thus, $ g$ is injective.
Since $ g$ is continuous and injective, we deduce that $ g$ is strictly monotone. But, if $ g$ is decreasing then $ f(x)=g(x)-x$ is (strictly) decreasing too, so that $ f$ would be injective, a contradiction.
Thus, $ g$ is increasing.
A straightforward induction leads to $ g^n(x) = ng(x)-(n-1)x = nf(x)+x$ for all $ x$ and positive integer $ n$.
Let $ a,b$ such that $ a<b$.
Since for each positive integer $ n$, the function $ g^n$ is increasing, we deduce that $ g^n(a) < g^n(b)$, which leads to $ f(a)-f(b) < \frac {b-a}{n}$ for all $ n>0$.
Taking limit on $ n$, leads to $ f(a)-f(b) \leq 0$, so that $ f$ is non-decreasing.
A straightforward induction leads to $ f(x+nf(x)) = f(x)$ for all $ x$ and non-negative integer $ n$
Since $ f$ is non-decreasing, it follows that $ f$ is constant on each intervall with endpoints $ x$ and $ x+nf(x)$ for each $ x$ $ n >0$.
Assume that there exists $ a$ such that $ f(a) > 0$ and $ c$ such that $ f(c)=0$.
Let $ M$ be the sup of the set $ S$ of the $ x$ such that $ f(x) =0$ (for all such $ x$, we have $ x < a$ since $ f$ is non-decreasing).
Using a sequence of element of $ S$ which has limit $ M$ and continuity of $ f$, we clearly deduce that $ f(M)=0$.
For each $ e>0$, we have $ f(M+e)>0$ so that $ f$ is constant on $ [M+e,+\infty[$. Clearly, when $ e$ varies, the constant value is always the same, say $ y$. Thus, for each $ e>0$, we have $ 0<y = f(M+e)$. Taking limit on $ e$ and using continuity, we deduce that $ f(M)=y >0$. A contradiction.
Assume there exist $ b$ such that $ f(b) < 0$ and $ c$ such that $ f(c)=0.$
Thus, from above $ f$ is constant on $ ]-\infty , b]$, and we get the same contradiction as above by considering $ m = \inf S$.
Therefore $ f$ is the zero function, or $ f$ has always the same sign on $ \mathbb{R}$.
In the latter case, if $ f(a) > 0$ for all $ a$, then $ f$ is constant on each $ [a, + \infty[$ for all $ a$, so that $ f$ is constant.
If $ f(b) < 0$ for all $ b$ then $ f$ is constant on each $ ]- \infty , b]$ for all $ b$, so that $ f$ is constant.
Thus, in each case $ f$ is constant.
Conversly, if $ f$ is constant then $ f$ is clearly a solution.
Pierre.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/246}{pbornsztein}]
Aaargh... a bit too slow in writing... :oops:
Pierre.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/285}{harazi}]
That's a bit too complicated, Pierre. :D Once you know that $ g(g(x))=2g(x)-x$ you easily deduce that $ g$ is bijective (by continuity and monotony), so that relation $ g^n(x)=ng(x)-(n-1)x$ actually holds for all integers $ n$. Next write $ g^n(x)<g^n(y)$ for all integers $ n$ if $ x<y$ and you're done.
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/32514}{TTsphn}]
Find all functions $f:\mathbb N\to\mathbb Z$ for which $f(1)=1$, $f(2)=0$, and
\[f(m)^2-f(n)^2=f(m+n)f(m-n),\quad \forall m,n \in \mathbb N, m>n.\]
\flushright \href{https://artofproblemsolving.com/community/c6h181737}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all function such that :
$ f: N\to Z$
$ f(m)^2 - f(n)^2 = f(m + n)f(m - n),\forall m > n$
$ f(1) = 1 ,f(2) = 0$\end{tcolorbox}
Let $ P(m,n)$ the property : $ f(m)^2 - f(n)^2 = f(m + n)f(m - n)$
$ P(n+2,n)$ gives $ f(n+2)^2=f(n)^2$ which implies $ f(2p)=0$ and $ f(2p+1)^2=1$
$ P(2p+1,2p)$ gives then $ 1=f(4p+1)$
$ P(2p+2,2p+1)$ gives $ -1=f(4p+3)$
And so we have a full definition of $ f(n)$ :
$ f(2p)=0$
$ f(4p+1)=1$
$ f(4p+3)=-1$
And it is easy to verify that these necessary conditions are also sufficient.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/32514}{TTsphn}]
More than find all function satisfy conditon :
$ f: N\to Z$ such that :
$ f(m)^2-f(n)^2=f(m+n)f(m-n)$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/29191}{zaya_yc}]
Find all functions $f: \mathbb N \to \mathbb N$ so that $ f(xf(y))=yf(x)$ for all $ x,y \in \mathbb N$ .
\flushright \href{https://artofproblemsolving.com/community/c6h181906}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/22804}{nayel}]
Put $ x = 1,y = t$ in the equation to get $ f(f(t)) = tf(1)\,\forall t\in\mathbb N\quad(1)$.
Again from the equation we have $ f(yf(x)) = xf(y)$. Hence $ f(f(xf(y))) = xf(y)$. Thus $ f(f(t)) = t$ for $ t = xf(y)$. Combining this with $ (1)$ we get $ f(1) = 1$. Thus $ x = 1,y = t$ implies $ f(f(t)) = t\,\forall t\in\mathbb N\quad(2)$.
Assume that $ f(a) = f(b)$. Then we have $ f(af(a)) = f(af(b))$ which implies $ af(a) = bf(a)\implies a = b$. Thus $ f$ is injective. However, $ (2)$ implies that $ f$ is surjective. Thus $ f$ is bijective.
The substitution $ y = f(z)$ in our original equation yields $ f(f(z)f(x)) = xf(f(z)) = zx\,\forall z,x\in\mathbb N$. But $ zx = f(f(zx))$. Thus $ f(f(zx)) = f(f(z)f(x))\implies f(zx) = f(z)f(x)$. This is Cauchy's equation with solution $ f(x) = x^k$ (the other solutions don't count since $ f: \mathbb N\to\mathbb N$). But $ f(f(x)) = x$ implies $ k^2 = 1$. Hence $ k = 1$ (as $ k\neq -1$). Thus the only solution is $ \boxed{f(x) = x}$.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all function $ f: N\to N$ so that $ f(xf(y)) = yf(x)$ for all $ x,y \in N$ .\end{tcolorbox}
Let $ P(x,y)$ be the property $ f(xf(y)) = yf(x)$
Let $ f(1)=a$
$ P(1,1)$ implies $ f(a)=a$
$ P(1,a)$ implies $ a=a^2$ and so $ a=1$
$ P(1,x)$ implies $ f(f(x))=x$ and $ f(x)$ is bijective
$ P(x,f(y))$ implies $ f(xy)=f(x)f(y)$ and $ f(x)$ is multiplicative and need only to be defined for primes.
$ f(x)=ab$, with $ a,b>1$ implies then $ x=f(a)f(b)$ with $ f(a)>1$ and $ f(b)>1$ (since f is bijective and so only $ f(1)=1$) and so image of a prime is a prime and only primes give primes.
Split then the set of primes in three distinct subsets $ A$, $ B$ and $ C$ such that exists a bijection $ h(p)$ from $ A$ to $ B$.
Let then $ f(x)$ defined as :
$ f(1)=1$
$ f(p)=h(p)$ $ \forall p\in A$
$ f(p)=h^{-1}(p)$ $ \forall p\in B$
$ f(p)=p$ $ \forall p\in C$
$ f(\prod p_i^{n_i})=\prod f(p_i)^{n_i}$ $ \forall$ non-primes.
And it is easy to verify that these necessary solutions are sufficient.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}$ f(zx) = f(z)f(x)$. This is Cauchy's equation with solution $ f(x) = x^k$ (the other solutions don't count since $ f: \mathbb N\to\mathbb N$). \end{tcolorbox}
Hello Nayel !
You're wrong here. Cauchy multiplcative equation has a lot of solutions different from $ f(x) = x^k$ when in $ \mathbb{N}$. For example, here :
$ f(1)=1$
$ f(2)=3$
$ f(3)=2$
$ f(p)=p$ for any prime $ p>3$
And other values using multiplicative property ($ f(4)=9$, $ f(8)=27$, $ f(9)=4$, $ f(12)=18$, ...).
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/36661}{mathfunny}]
Find all functions $f: \mathbb R \to \mathbb R$ which satisfy $ f(x+y)=f(x)\cdot f(y) \cdot f(xy)$ for all $x,y\in\mathbb{R}$.
\flushright \href{https://artofproblemsolving.com/community/c6h182651}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions satify $ f(x + y) = f(x).f(y).f(xy), \forall x,y\in\mathbb{R}$\end{tcolorbox}
Let $ P(x,y)$ be the property $ f(x + y) = f(x).f(y).f(xy)$
$ 1)$ If $ \exists x_0$ such that $ f(x_0) = 0$, then $ P(x - x_0,x_0)$ implies $ f(x) = 0$ $ \forall x$
$ 2)$ suppose now $ f(x)\neq 0$ $ \forall x$. Let then $ x\neq 0$ and $ y\neq 0$ :
$ P(x,\frac {1}{xy} + y)$ implies $ f(x + y + \frac {1}{xy}) = f(x)^2f(\frac {1}{xy})f(y)f(\frac {1}{x})f(\frac {1}{y})f(xy)$
$ P(x + \frac {1}{xy},y)$ implies $ f(x + y + \frac {1}{xy}) = f(x)f(y)^2f(\frac {1}{xy})f(\frac {1}{y})f(xy)f(\frac {1}{x})$
And so $ f(x) = f(y)=c$ $ \forall x,y\neq 0$
Then $ P(x,x)$, $ x\neq 0$ gives $ c=c^3$ and so $ c=-1$ or $ c=+1$
And $ P(x,-x)$, $ x\neq 0$ gives $ f(0)=c^3=c$
And so we have only three solutions : (EDITED : first post said five solution)
$ f(x) = 0$ $ \forall x$
$ f(x) = - 1$ $ \forall x$
$ f(x) = + 1$ $ \forall x$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/36147}{Edward_Tur}]
Find all functions $f: \mathbb R \to \mathbb R$ such that $$ xf(y)-yf(x)=f\left( {\frac{y}{x}} \right),$$ for all reals $x$ and $y$.
\flushright \href{https://artofproblemsolving.com/community/c6h183261}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}$ xf(y) - yf(x) = f\left( {\frac {y}{x}} \right)$\end{tcolorbox}
Let $ P(x,y)$ the property $ xf(y) - yf(x) = f\left( {\frac {y}{x}} \right)$
$ P(1,1)$ $ \implies$ $ f(1)=0$
$ P(\frac{1}{x},y)$ implies $ \frac{1}{x}f(y) - yf(\frac{1}{x}) = f(xy)$
But $ P(x,1)$ gives $ - f(x) = f( \frac {1}{x})$
And so $ f(xy)=\frac{1}{x}f(y) + yf(x)$
But (symetry between $ x$ and $ y$) we also have $ f(xy)=\frac{1}{y}f(x) + xf(y)$
And so $ \frac{1}{x}f(y) + yf(x)=\frac{1}{y}f(x) + xf(y)$
and so $ \frac{f(x)}{x-\frac{1}{x}}= \frac{f(y)}{y-\frac{1}{y}}=c$
And so $ f(x)=c(x-\frac{1}{x})$.
Plugging back this necessary condition in the original equation, we get that it works with any $ c$.
The solutions are $ \boxed{f(x)=c(x-\frac{1}{x})}$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/13743}{redkimchi}]
Suppose $ f$ is a function on the positive integers which takes integer values with the following properties:
(a) $ f(2) = 2$
(b) (multiplicative) $ f(mn) = f(m)f(n)$ for all positive integers $ m$ and $ n$
(c) (increasing) $ f(m) > f(n)$ if $ m > n$
Find $ f(1983)$.
Generalized problem : Find all functions $ f$ on the positive integers which takes real values\end{bolded} and satisfying (b) and (c).
\flushright \href{https://artofproblemsolving.com/community/c6h183876}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/13985}{BaBaK Ghalebi}]
I think the condition (a) is necessary...
anyway a function $ f$ satisfying (a),(b),(c) is the single function $ f(n)=n$...
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/246}{pbornsztein}]
That's a well-known result from Erdös that if $ f: \mathbb{N^*} \rightarrow \mathbb{R}$ is multiplicative and non-decreasing then $ f$ is constant or of the form $ f(n) = n^u$ for some positive real $ u$.
Pierre.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}[Australian 1984 (or 1983) p. 7] Suppose $ f$ is a function on the positive integers which takes integer values with the following properties:
[list](a) $ f(2) = 2$
(b) (multiplicative) $ f(mn) = f(m)f(n)$ for all positive integers $ m$ and $ n$
(c) (increasing) $ f(m) > f(n)$ if $ m > n$ [\/list]
Find $ f(1983)$.
Generalized problem : Find all functions $ f$ on the positive integers which takes real values\end{bolded} and satisfying (b) and (c).\end{tcolorbox}
First, we have $ f(n)\neq 0$ $ \forall n>0$ (else we would have $ f(2n)=f(n)=0$ and so contradiction with (c)).
Then, we have $ f(1)=1$ since $ f(1)=f(1\times 1)=f(1)^2$ and $ f(1)\neq 0$ (see above).
Then, we have $ f(n)>1$ $ \forall n>1$. It's true since we have then $ f(n)>f(1)=1$ $ \forall n>1$ (applying (c)).
Let then $ u,v$, such that $ u\neq v$, $ u>1$, $ v>1$.
Since $ f(u)$ and $ f(v)$ are positive, $ \ln(f(u))$ and $ \ln(f(v))$are defined. Assume then $ \frac{\ln(f(u))}{\ln(u)}\neq\frac{\ln(f(v))}{\ln(v)}$.
Then we have $ \frac{\ln(f(u))}{\ln(f(v))}\neq\frac{\ln(u)}{\ln(v)}$ WLOG say $ 0<\frac{\ln(f(u))}{\ln(f(v))}<\frac{\ln(u)}{\ln(v)}$.
Then, it exists two positive integer $ p,q$ such that $ 0<\frac{\ln(f(u))}{\ln(f(v))}<\frac{p}{q}<\frac{\ln(u)}{\ln(v)}$
$ \frac{\ln(f(u))}{\ln(f(v))}<\frac{p}{q}$ implies $ f(u^q)<f(v^p)$
$ \frac{p}{q}<\frac{\ln(u)}{\ln(v)}$ implies $ v^p<u^q$
And so we have a contradiction with (c).
So $ \frac{\ln(f(u))}{\ln(u)}=\frac{\ln(f(v))}{\ln(v)}=c$ for some real $ c>0$
So $ \boxed{f(n)=n^c}$ $ \forall n>0$
If we add the condition (a), we have $ c=1$ and $ f(n)=n$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/35072}{robbenmaths}]
$ f(x)$ is a function defined on $ [0,1]$ such that
1) $ f(1)=1$,
2) $ f(x)=\frac{1}{3}[f(\frac{x}{3})+f(\frac{x+1}{3})+f(\frac{x+2}{3})]$ for all $ x \in [0,1]$, and
3) For every $ \epsilon>0$, there exists a positive $ \delta$ such that: for all $ x \in [0;1]$ and $ |x-y|<\delta$, we have
$$ |f(x)-f(y)|<\epsilon.$$
Prove that $ f(x)=1$ for all $ x \in [0,1]$.
\flushright \href{https://artofproblemsolving.com/community/c6h184003}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}$ f(x)$ is a function defined on $ [0;1]$ such that
1) $ f(1) = 1$
2) $ f(x) = \frac {1}{3}[f(\frac {x}{3}) + f(\frac {x + 1}{3}) + f(\frac {x + 2}{3})]$ for all $ x \in [0;1]$
3) For every $ \epsilon > 0$, there exists a positive $ \delta$ such that: for all $ x \in [0;1]$ and $ |x - y| < \delta$, we have
$ |f(x) - f(y)| < \epsilon$.
Prove that $ f(x) = 1$ for all $ x \in [0;1]$\end{tcolorbox}
The point $ 3)$ implies $ f(x)$ is continuous, so is bounded on $ [0,1]$. Let $ m$ the minimum value.
So it exists $ x_0$ such that $ f(x)\geq f(x_0)=m$ $ \forall x\in [0,1]$.
Then $ f(x) = \frac {1}{3}[f(\frac {x}{3}) + f(\frac {x + 1}{3}) + f(\frac {x + 2}{3})]$ implies $ f(x_0) = f(\frac {x_0}{3}) = f(\frac {x_0 + 1}{3}) = f(\frac {x_0 + 2}{3})=m$
Then, applying the same demo with $ \frac{x_0}{3}$, $ \frac{x_0+1}{3}$ and $ \frac{_0x+2}{3}$, we get $ f(\frac{x_0+k}{9})=m$ $ \forall k=0,1,2,...,8$.
And, with induction : $ f(\frac{x_0+k}{3^p})=m$ $ \forall k=0,1,2,...,3^p-1$
And, since $ f(x)$ is continuous, $ f(x)=m$ $ \forall x\in[0,1]$
And so, since $ f(1)=1$, $ f(x)=1$ $ \forall x\in[0,1]$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/18420}{aviateurpilot}]
we take for $ e>0$: $ E(e)=\{h\in[0,1]: \ \forall x,y\in[0,1],|x-y|<h\Rightarrow |f(x)-f(y)|<e\}$
and we take $ \delta=sup(E(e))$
if $ \delta <1$
we see that for $ h\in[\delta,min(3\delta,1)[$
if $ |x-y|\le h$ then for $ k\in\{0,1,2\}: \ |\frac{x+k}{3}-\frac{y+k}{3}|<\frac{h}{3}<\delta$
so $ \forall k\in\{0,1,2\}: \ |f(\frac{x+k}{3})-f(\frac{y+k}{3})|<e$
then $ |f(x)-f(y)|=\frac{1}{3}|\sum_{k=0}^{2}f(\frac{x+k}{3})-f(\frac{y+k}{3})|<e$
then $ min(3\delta,1) \in E(e)$ gives $ min(3\delta,1)\le sup(E(e))=\delta$ (impossible)
then $ \forall e>0: \ sup(E(e))=1$
so $ \forall e>0,\forall x,y\in]0,1]$ we have $ |x-y|<1$ then $ |f(x)-f(y)|<e$ then $ f(x)=f(y)=f(1)=1$
so $ \forall x\in]0,1]: \ f(x)=1$ and $ f(0)=\frac{1}{3}(f(0)+f(1\/3)+f(2\/3))=\frac{1}{3}(f(0)+2)$ gives $ f(0)=1$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/22804}{nayel}]
Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x+f(y-x))=y+2f(x)\]
for all $ x,y\in\mathbb R$.
\flushright \href{https://artofproblemsolving.com/community/c6h184072}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x + f(y - x)) = y + 2f(x)
\]
for all $ x,y\in\mathbb R$.\end{tcolorbox}
$ x=0$ and $ y=-2f(0)$ implies $ f(f(-2f(0)))=0$
Then $ y=x+f(-2f(0))$ implies $ f(y-x)=0$ and so $ f(x)=x+f(-2f(0))+2f(x)$ and so $ f(x)=a-x$ for some real $ a$.
Plugging back this value in original equation, we get $ a=0$ and so the unique solution $ \boxed{f(x)=-x}$.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/22804}{nayel}]
Wow... nice and quick solution. I didn't think it would be this easy...
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/37331}{Kamyar1991}]
hi nayel!! if f(0)=c we have f(c)=0 and f(f(c))=4c then f(2c)=c f(f(c))=f(2c)=c so 4c=c c=0
in the main equality x=y then f(x)=-x this problem is very obviouse u try to solve my problem ( IRAN!!! navid safaee)
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/22804}{nayel}]
Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x+f(y-x))=f(x)-f(y)+x\]
for all $ x,y\in\mathbb R$.
\flushright \href{https://artofproblemsolving.com/community/c6h184076}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x + f(y - x)) = f(x) - f(y) + x
\]
for all $ x,y\in\mathbb R$.\end{tcolorbox}
$ x = y$ implies $ f(x + f(0)) = x$ and so $ f(x) = x - f(0)$ and so ($ x = 0$) $ f(0) = - f(0)$ and $ f(0) = 0$.
And so the unique solution would be $ f(x) = x$ but it is easy to check that this necessary condition does not work.
And so no solution for this equation.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/1147}{stergiu}]
\begin{tcolorbox}[quote="nayel"]Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x + f(y - x)) = f(x) - f(y) + x
\]
for all $ x,y\in\mathbb R$.\end{tcolorbox}
$ x = y$ implies $ f(x + f(0)) = x$ and so $ f(x) = x - f(0)$ and so ($ x = 0$) $ f(0) = - f(0)$ and $ f(0) = 0$.
And so the unique solution would be $ f(x) = x$ but it is easy to check that this necessary condition does not work.
And so no solution for this equation.\end{tcolorbox}
Nice ! But if we had :
\[ f(x + f(y - x)) = f(x) + f(y) - x
\]
for all $ x,y\in\mathbb R$
what should we do to provw that $ f(x) = x+c$ ?
Babis
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/31988}{ringos}]
\begin{tcolorbox}[quote="pco"][quote="nayel"]Find all functions $ f: \mathbb R\to\mathbb R$ such that
\[ f(x + f(y - x)) = f(x) - f(y) + x
\]
for all $ x,y\in\mathbb R$.\end{tcolorbox}
$ x = y$ implies $ f(x + f(0)) = x$ and so $ f(x) = x - f(0)$ and so ($ x = 0$) $ f(0) = - f(0)$ and $ f(0) = 0$.
And so the unique solution would be $ f(x) = x$ but it is easy to check that this necessary condition does not work.
And so no solution for this equation.\end{tcolorbox}
Nice ! But if we had :
\[ f(x + f(y - x)) = f(x) + f(y) - x
\]
for all $ x,y\in\mathbb R$
what should we do to provw that $ f(x) = x$ ?
Babis\end{tcolorbox}
If $ f(a) = f(a+c)$, put $ y = x + a$ and $ y = x + a + c$, we get $ f(x+c) = f(x)$ for all x.
Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective.
Put $ x = f(y)$, we get $ f(y-f(y)) = 0$. $ y-f(y)$ must be a constant because $ f$ is injective.
It is easy to check that $ f(x) = x + c$ satisfy the condition.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/1147}{stergiu}]
\begin{tcolorbox}
.........
If $ f(a) = f(a + c)$, put $ y = x + a$ and $ y = x + a + c$, we get $ f(x + c) = f(x)$ for all x.
Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective.
Put $ x = f(y)$, we get $ f(y - f(y)) = 0$. $ y - f(y)$ must be a constant because $ f$ is injective.
It is easy to check that $ f(x) = x + c$ satisfy the condition.\end{tcolorbox}
Please , can you explain the last step ?
'' Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective. ''
Where (to which relation)do you put this $ x=x+c$ and how do reach that c=0?
Thanks in advance - Babis
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}[quote="ringos"]
.........
If $ f(a) = f(a + c)$, put $ y = x + a$ and $ y = x + a + c$, we get $ f(x + c) = f(x)$ for all x.
Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective.
Put $ x = f(y)$, we get $ f(y - f(y)) = 0$. $ y - f(y)$ must be a constant because $ f$ is injective.
It is easy to check that $ f(x) = x + c$ satisfy the condition.\end{tcolorbox}
Please , can you explain the last step ?
'' Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective. ''
Where (to which relation)do you put this $ x = x + c$ and how do reach that c=0?
Thanks in advance - Babis\end{tcolorbox}
Explanation :
Let $ P(x,y)$ be the property $ f(x+f(y-x))=f(x)+f(y)-x$
Suppose $ f(a)=f(b)$. Then :
$ P(x,x+a)$ gives $ f(x+f(a))=f(x)+f(x+a)-x$
$ P(x,x+b)$ gives $ f(x+f(b))=f(x)+f(x+b)-x$
And, since $ f(a)=f(b)$, the two LHS are identical, so the two RHS are also identical, and we have the property $ Q(x)$ : $ f(x+a)=f(x+b)$ $ \forall x$
Let then $ P(a,x)$ : $ f(a+f(x-a))=f(a)+f(x)-a$
$ Q(x-b-a)$ implies $ f(x-b)=f(x-a)$ so LHS is equal to $ f(a+f(x-b))$
$ Q(f(x-b))$ implies $ f(a+f(x-b))=f(b+f(x-b))$ so LHS is equal to $ f(b+f(x-b))$
And, since $ f(a)=f(b)$, the equality becomes $ f(b+f(x-b))=f(b)+f(x)-a$
But $ P(b,x)$ implies $ f(b+f(x-b))=f(b)+f(x)-b$
And so $ f(b)+f(x)-a=f(b)+f(x)-b$
So $ f(a)=f(b)$ implies $ a=b$ and $ f(x)$ is injective.
Then $ P(f(x),x)$ gives $ f(f(x)+f(x-f(x)))=f(f(x))$ and so injectivity implies $ f(x)+f(x-f(x))=f(x)$ and so $ f(x-f(x))=0$ and so, with injectivity again : $ f(x)=x+$constant.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/1147}{stergiu}]
\begin{tcolorbox}[quote="stergiu"][quote="ringos"]
.........
If $ f(a) = f(a + c)$, put $ y = x + a$ and $ y = x + a + c$, we get $ f(x + c) = f(x)$ for all x.
Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective.
Put $ x = f(y)$, we get $ f(y - f(y)) = 0$. $ y - f(y)$ must be a constant because $ f$ is injective.
It is easy to check that $ f(x) = x + c$ satisfy the condition.\end{tcolorbox}
Please , can you explain the last step ?
'' Put $ x = x + c$, we get $ c = 0$. So $ f$ is injective. ''
Where (to which relation)do you put this $ x = x + c$ and how do reach that c=0?
Thanks in advance - Babis\end{tcolorbox}
Explanation :
Let $ P(x,y)$ be the property $ f(x + f(y - x)) = f(x) + f(y) - x$
Suppose $ f(a) = f(b)$. Then :
$ P(x,x + a)$ gives $ f(x + f(a)) = f(x) + f(x + a) - x$
$ P(x,x + b)$ gives $ f(x + f(b)) = f(x) + f(x + b) - x$
And, since $ f(a) = f(b)$, the two LHS are identical, so the two RHS are also identical, and we have the property $ Q(x)$ : $ f(x + a) = f(x + b)$ $ \forall x$
Let then $ P(a,x)$ : $ f(a + f(x - a)) = f(a) + f(x) - a$
$ Q(x - b - a)$ implies $ f(x - b) = f(x - a)$ so LHS is equal to $ f(a + f(x - b))$
$ Q(f(x - b))$ implies $ f(a + f(x - b)) = f(b + f(x - b))$ so LHS is equal to $ f(b + f(x - b))$
And, since $ f(a) = f(b)$, the equality becomes $ f(b + f(x - b)) = f(b) + f(x) - a$
But $ P(b,x)$ implies $ f(b + f(x - b)) = f(b) + f(x) - b$
And so $ f(b) + f(x) - a = f(b) + f(x) - b$
So $ f(a) = f(b)$ implies $ a = b$ and $ f(x)$ is injective.
Then $ P(f(x),x)$ gives $ f(f(x) + f(x - f(x))) = f(f(x))$ and so injectivity implies $ f(x) + f(x - f(x)) = f(x)$ and so $ f(x - f(x)) = 0$ and so, with injectivity again : $ f(x) = x +$constant.\end{tcolorbox}
Many thinks
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/1147}{stergiu}]
Michael Lambrou , Prof. at University of Crete - Greece gave this solution :
Let $ f(0) = c$ For $ x = y = -c$ the initial gives
$ f(-c + c) = f(-c) + f(-c) + c$,
that is
$ c = 2f(-c) + c$,
hence $ f(-c) = 0$.
For $ x = t + c, y = t$ the initial relation gives
$ f( t + c + 0) = f(t + c) + f(t)-t-c$
Thus $ f(t) = t + c$ , which is acceptable .
[color=blue]\begin{italicized}I must thank prof Lambou and all solvers of this problem and of course Nayel who gave the basic idea to create the problem.\end{italicized}[\/color]
BAbis
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/11714}{mathgeniuse^ln(x)}]
I found a solution to this functional equation, but was wondering whether I made any flaws?
Find all Functions f from the Real Numbers to the Real Numbers such that
$ f(x-f(y))=f(f(y))+xf(y)+f(x)-1$ for all x,y in the real numbers.
Solution
[hide]First, let $ x=0$, then we have $ f(-f(y))=f(f(y))+f(0)-1$.
Then set $ f(y)=g(y^{2})$, to get $ f(-g(y^{2}))=f(g(y^{2}))+g(0)-1$, which implies that $ g((g(y^{2}))^{2})=g((g(y^{2}))^{2})+g(0)-1$, so $ g(0)=1$, and then $ f(0)=1$.
Next, we observe that plugging $ y=0$, we get that
$ f(x-1)=f(1)+x+f(x)-1$. Upon plugging $ x=1$, we get that $ f(1)=\frac{1}{2}$.
Furthermore, we see that $ f(x-1)=f(1)+x+f(x)-1$(*) implies that $ g(x^{2}-2x+1)=x-1\/2+g(x^{2})$ (**).
However, $ \frac{g(x^{2}-2x+1)-g(x^{2})}{-2x+1}=-\frac{1}{2}$, for all values of x, except $ x=\frac{1}{2}$. So, for right now, for all values of x, except for $ x=\frac{1}{2}$, $ g(x)=1-\frac{x}{2}$ (***), for we know that $ g(0)=1$.
Now, we set $ x=\frac{\sqrt{2}}{2}$ into (**).
Then we get that $ g(\frac{3}{2}-\sqrt{2})=\frac{\sqrt{2}}{2}-\frac{1}{2}+g(\frac{1}{2})$.
This implies that $ g(\frac{1}{2})=\frac{3}{4}$ from knowing (***) for all $ x \neq \frac{1}{2}$.
Likewise, we plug in $ x=-\frac{\sqrt{2}}{2}$ into (**), and we see that we get $ g(\frac{1}{2})=\frac{3}{4}$.
So, in either case, we get that $ g(x)=1-\frac{x}{2}$, for all $ x$.
Therefore, $ f(x)=1-\frac{x^{2}}{2}$ is the only function that works in this problem, which can be checked easily.[\/hide]
\flushright \href{https://artofproblemsolving.com/community/c6h184439}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}I found a solution to this functional equation, but was wondering whether I made any flaws?\end{tcolorbox}
I think you made some.
\begin{tcolorbox}
...
Then set $ f(y) = g(y^{2})$,
...
\end{tcolorbox}
You can't set $ f(y) = g(y^{2})$ except if you prove first that $ f(-x)=f(x)$
\begin{tcolorbox}
...
$ \frac {g(x^{2} - 2x + 1) - g(x^{2})}{ - 2x + 1} = - \frac {1}{2}$, for all values of x, except $ x = \frac {1}{2}$. So, for right now, for all values of x, except for $ x = \frac {1}{2}$, $ g(x) = 1 - \frac {x}{2}$ (***)\end{tcolorbox}
How could you conclude from $ \frac {g(x^{2} - 2x + 1) - g(x^{2})}{ - 2x + 1} = - \frac {1}{2}$ that $ g(x) = 1 - \frac {x}{2}$.
It can't be immediate.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}I found a solution to this functional equation, but was wondering whether I made any flaws?
Find all Functions f from the Real Numbers to the Real Numbers such that
$ f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$ for all x,y in the real numbers.
\end{tcolorbox}
It's a problem I searched for a long time on another forum without finding general solution. I have a solution with one constraint more :
"The set of discontinuity points of $ f(x)$ is included in an interval $ (a,b)$" (for example, $ f(x)$ has a finite set of discontinuity points).
With this condition, the only solution is $ f(x)=1-\frac{x^2}{2}$. Here is the solution I gave on this other forum :
Let $ P(x,y)$ the property $ f(x-f(y)) = f(f(y)) + xf(y) + f(x) - 1$.
$ 1)$ $ f(x)$ is not bounded (it does not exist $ u,v$ such that $ u<f(x)<v$ $ \forall x$)
Obviously $ \exists y_0$ such that $ f(y_0)\neq 0$.
Then, in $ P(x,y_0)$, let $ x\rightarrow+\infty$ : RHS is not bounded, and so LHS can't be bounded. Q.E.D.
$ 2)$ $ f(x) = \frac{f(0)+1}{2} - \frac{x^2}{2}$ $ \forall x\in Im(f)$ (I name $ Im(f)$ the set $ \{f(x)$, $ x\in\mathbb{R}\}$).
$ P(f(x),x)$ implies $ f(0) = 2f(f(x)) + f(x)^2 - 1$ and so
$ f(f(x))= \frac{f(0)+1}{2} - \frac{f(x)^2}{2}$
And hence the result.
$ 3)$ $ f(x) = 1 - \frac{x^2}{2}$ For all $ x$ such that $ \frac{x}{2}\in Im(f)$
$ P(2f(x),x)$ implies $ f(f(x)) = f(f(x)) + 2f(x)^2 + f(2f(x)) - 1$ and so
$ f(2f(x)) = 1 - \frac{(2f(x))^2}{2}$
And hence the result.
$ 4)$ $ f(0)=1$
Since $ f(x)$ is not bounded (see $ 1$ above), and since the set of discontinuity points of $ f(x)$ is included in an interval $ (a,b)$, it is possible to find two values $ u$ and $ v$ such that $ f(v)=2f(u)$
Then, point 2 above gives $ f(f(v)) = \frac{f(0)+1}{2} - \frac{f(v)^2}{2}$
And point 3 above gives $ f(f(v)) = 1 - \frac{f(v)^2}{2}$
And so $ \frac{f(0)+1}{2}= 1$
And hence the result.
$ 5)$ $ f(x) = 1 - \frac{x^2}{2}$ $ \forall x\in\mathbb{R}$
Let $ g(x) = f(x) - (1 - \frac{x^2}{2})$. $ P(x,y)$ becomes : $ g(x-f(y)) = g(f(y))+ g(x)$
Let then $ x=f(y)$, we have $ g(f(y))=\frac{g(0)}{2} = 0$. And so
$ g(x - y) = g(x)$ $ \forall x\in\mathbb{R}$, $ \forall y\in Im(f)$
Since we know that it exists an intervall $ [-\infty,x_1)$ or $ (x_2,+\infty)$ included in $ Im(f)$, we can conclude that $ g(x)=$contant$ =0$.
And hence the result.
========
It remains to study the case of functions having infinitly many discontinuity points whose set is unbounded.
So, to be continued ...
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/49556}{xxp2000}]
1) $ f(0) = 1$ and $ f(f(y)) = 1 - \frac {f(y)^2}2$
Let $ a = f(0)$.
$ P(0,y): f(f(y)) = \frac {1 + a - f(y)^2}2$
We know $ f$ cannot be constant function. So there exists $ x = \frac1{f(y)}$ for some $ y$.
Then we have $ f(\frac1{f(y)} - f(y)) = f(f(y)) + f(\frac1{f(y)})$.
Now let $ u = f(\frac1{f(y)} - f(y))$ and $ v = f(y)$. We see $ u$ and $ u - f(v)$ are all in $ Im(f)$.
$ P(u,v): \frac {1 + a - (u - f(v))^2}2 = \frac {1 + a - f(v)^2}2 + uf(v) + \frac {1 + a - u^2}2 - 1\Rightarrow a = 1$
2) $ f(x) = 1 - \frac {x^2}2$
Let $ g(x) = f(x) + \frac {x^2}2$, the original equation can be rewritten as
$ g(x + \frac {y^2}2 - g(y)) = g(x)$.
Hence $ g$ is periodic function with period $ \frac {y^2}2 - g(y)$ for any $ y$
$ g(0) = 1\Rightarrow g(x - 1) = g(x)$
Let $ y$ be arbitrary, we see $ \frac {(y - 1)^2}2 - g(y - 1)$ is also a period. Since the difference of two periods is still period,
$ [\frac {y^2}2 - g(y)] - [\frac {(y - 1)^2}2 - g(y - 1)] = y - \frac12$ is another period.
Since $ y-\frac12$ can be any real number, $ g(y) = g(0) = 1$ for any $ y$.
Hence $ f(x) = g(x) - \frac {x^2}2 = 1 - \frac {x^2}2$.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/10035}{Altheman}]
When you rewrite the equation in terms of $ g$, it is incorrect. You dropped the $ g(f(x))$ term and the constant. It should be $ g(x-f(y))=g(f(y))+g(x)-1$ (then you can replace $ f(y)$ again, but it is a fundamentally different equation).
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/49556}{xxp2000}]
$ g(x-f(y))\\=f(x-f(y))+\frac12(x-f(y))^2\\=f(f(y))+xf(y)+f(x)-1+\frac12(x-f(y))^2\\=1-\frac12(f(y))^2+xf(y)+f(x)-1+\frac12x^2-xf(y)+\frac12(f(y))^2\\=f(x)+\frac12x^2\\=g(x)$.
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/37331}{Kamyar1991}]
Find all functions $ f: \mathbb{Z} - \{0\}\to\mathbb{Q}$ which satisfy
\[f\left(\frac {x + y}3\right) = \frac {f(x) + f(y)}2,\]
for all $ x,y\in\mathbb{Z} - \{0\}$ such that $ 3\mid x + y$.
\flushright \href{https://artofproblemsolving.com/community/c6h184766}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}you are right pco,the problem is not correctly stated,the original problem is the following one:
find all functions $ f: \mathbb{Z} - \{0\}\to\mathbb{Q}$ which fulfill the following condition:
$ f\left(\frac {x + y}3\right) = \frac {f(x) + f(y)}2$\end{bolded}
so we must have $ 3\mid x + y$ and also $ x,y\in\mathbb{Z} - \{0\}$ for example $ x = 1,y = 2$\end{tcolorbox}
Let $ P(x,y)$ be the property $ f\left(\frac {x + y}3\right) = \frac {f(x) + f(y)}2$
$ P(x,2x)$ implies $ f(2x)=f(x)$ $ \forall x\neq 0$
$ P(3x,3x)$ implies $ f(2x)=f(3x)$ $ \forall x\neq 0$ and so $ f(3x)=f(2x)=f(x)$ $ \forall x\neq 0$
Assume then $ f(nx)=f(x)$ $ \forall x\neq 0$ for some integer $ n\neq 0$. Then :
$ P(3nx,3x)$ implies $ f((n+1)x)=\frac{f(3nx)+f(3x)}{2}$ and, since we know $ f(3x)=f(x)$, $ f((n+1)x)=\frac{f(nx)+f(x)}{2}$, and, since $ f(nx)=f(x)$, $ f((n+1)x)=f(x)$
So $ f(nx)=f(x)$ $ \forall x\neq 0$ and $ \forall n>0$
Then $ P(6x,-3x)$ gives $ f(x)=\frac{f(6x)+f(-3x)}{2}$ $ =\frac{f(x)+f(-x)}{2}$ and so $ f(-x)=f(x)$ $ \forall x$
And so $ f(nx)=f(x)$ $ \forall x\neq 0$, $ \forall n\in\mathbb{Z}^*$
And so the solutions are $ f(x)=c$ for any $ c\in\mathbb{Q}$ (and it is easy to check that these necessary conditions are sufficient).
But I don't understand the interest of $ \mathbb{Z}^*$ instead of $ \mathbb{Z}$ or the interest of $ \mathbb{Q}$ instead of $ \mathbb{R}$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/13985}{BaBaK Ghalebi}]
\begin{tcolorbox}But I don't understand the interest $ \mathbb{Z}^{*}$ of instead of $ \mathbb{Z}$ or the interest of $ \mathbb{Q}$ instead of $ \mathbb{R}$\end{tcolorbox}
this problem was given in an iranian olympiad about 13 years ago,and the official solution uses induction to prove that $ f$ is constant,but as far as I can see,the official solution didn't use tha fact $ f: \mathbb{Z}^{*}\to\mathbb{Q}$ either (instead of $ f: \mathbb{Z}\to\mathbb{R}$)
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/34189}{tdl}]
Find all functions $f: \mathbb N \to \mathbb N$, for which the relation $ f (f (n)) + (f (n))^2 = n^2 + 3n + 3$ holds for all $n \in \mathbb N$.
\flushright \href{https://artofproblemsolving.com/community/c6h185525}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions $ f : N\rightarrow N$, for which the relation $ f (f (n)) + (f (n))^2 = n^2 + 3n + 3$ holds.\end{tcolorbox}
If $ f(n)>n+1$, we have $ f(n)\geq n+2$ and so $ f(f(n))\leq n^2+3n+3-(n+2)^2=-n-1<0$, which is impossible. So $ f(n)\leq n+1$ $ \forall n$
If $ 0<f(n)<n+1$, we have $ f(f(n))>n^2+3n+3-(n+1)^2=n+2>f(n)+1$ and so $ f(m)>m+1$ with $ m=f(n)$ and this is impossible (see line above).
So we must have $ f(n)=n+1$ $ \forall n$ and it is easy to check that this necessary condition is sufficient.
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/34189}{tdl}]
Find all functions $f: \mathbb R \to \mathbb R$ satisfying the equality $$ f (y) + f (x + f (y)) = y + f (f (x) + f (f (y)))$$ happens for all real $ x$ and $ y$.
\flushright \href{https://artofproblemsolving.com/community/c6h185527}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}Find all functions $ f : R\rightarrow R$ satisfying the equality $ f (y) + f (x + f (y)) = y + f (f (x) + f (f (y)))$ for all real $ x; y$.\end{tcolorbox}
Let $ P(x,y)$ be the property $ f (y) + f (x + f (y)) = y + f (f (x) + f (f (y)))$
Let $ a=f(0)$
First, if $ f(y)=f(z)$, looking at $ P(x,y)$ and $ P(x,z)$ shows that $ y=z$ and so $ f(x)$ is injective.
$ P(0,0)$ implies $ a + f (a) = f (a + f (a))$ and so $ f(u)=u$ where $ u=a+f(a)$
$ P(x,u)$ implies $ u + f (x + u) = u + f (f (x) + u)$, so $ f (x + u) =f (f (x) + u)$ and, since $ f(x)$ is injective, $ x+u=f(x)+u$ and so $ f(x)=x$
And it is easy to check that this necessary condition is sufficient.
So the unique solution is $ \boxed{f(x)=x}$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/37331}{Kamyar1991}]
Find all functions $f: \mathbb R \to \mathbb R$ such that
\[f(x^2+f(y))=(f(x))^2+y, \quad \forall x,y \in \mathbb R.\]
\flushright \href{https://artofproblemsolving.com/community/c6h185651}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}f(x^2+f(y))=(f(x))^2+y sorry !! :oops:\end{tcolorbox}
Let $ P(x,y)$ be the property $ f(x^2+f(y))=f(x)^2+y$
Let $ a=f(0)$
$ P(0,x)$ implies $ f(f(x))=x+a^2$ and so $ f(x)$ is bijective.
Comparing $ P(x,y)$ and $ P(-x,y)$ we get $ f(x)^2=f(-x)^2$ and, since $ f(x)$ is injective, $ f(-x)=-f(x)$ $ \forall x\neq 0$
Since $ f(x)$ is surjective, it exists $ b$ such that $ f(b)=0$. Then, if $ b\neq 0$, we have $ f(b)=-f(-b)=0$, which is impossible ($ f(x)$ is injective). So $ b=0$ and $ f(0)=0$
So we have $ f(f(x))=x$.
$ P(x,0)$ gives $ f(x^2)=f(x)^2$
$ P(x,f(y))$ gives then $ f(x^2+y)=f(x)^2+f(y)=f(x^2)+f(y)$
So $ f(x+y)=f(x)+f(y)$ $ \forall x,y$ (If $ x\geq 0$, see line above; If $ x<0$, use $ f(-x)=-f(x)$ plus line above.
So we have a Cauchy equation with the supplementary characteristic that $ f(x)\geq 0$ $ \forall x\geq 0$, which implies $ f(x)$ increasing, so continuous, and so $ f(x)=cx$
Plugging back this necessary condition in the original equation, we get $ c=1$ and the unique solution is $ ^\boxed{f(x)=x}$
\end{solution}
*******************************************************************************
-------------------------------------------------------------------------------
\begin{problem}[Posted by \href{https://artofproblemsolving.com/community/user/16000}{tchebytchev}]
Let $ f$ and $ g$ be two continuous and bijective functions defined from $ \mathbb R$ to $\mathbb R$ such that $$ f(g^{ - 1}(x)) + g(f^{ -1}(x)) = 2x$$ for all reals $x$ and there exists a real number $ c$ such that $ f(c) = g(c).$
Prove that $ f(x) = g(x)$ for every real number $ x$.
\flushright \href{https://artofproblemsolving.com/community/c6h186115}{(Link to AoPS)}
\end{problem}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}let $ f$ and $ g$ be two continious and bijectives functions defined from $ R$ to $ R$ such that $ f(g^{ - 1}(x)) + g(f^{ - 1}(x)) = 2x$ and there exist a real nuber $ c$ such that $ f(c) = g(c).$
prove that $ f(x) = g(x)$ for every real number $ x$.\end{tcolorbox}
Taking $ h(x)=f(g^{-1}(x))$ and $ u=g(c)$, this problem is equivalent to :
let $ h$ be a continuous bijective function defined from $ R$ to $ R$ such that $ h(x) + h^{ - 1}(x) = 2x$ and there exists a real number $ u$ such that $ h(u)=u.$
prove that $ h(x) = x$ for every real number $ x$.
Let $ x_0$ such that $ h(x_0)-x_0=a\neq 0$. We have $ h(x_0)=x_0+a$ and, using $ h(x) + h^{ - 1}(x) = 2x$, we get $ h(x_0+na)=(n+1)a$ $ \forall n\in\mathbb{Z}$.
More, $ h(x)$, since bijective and continuous, is strictly monotonous, and so strictly increasing (since $ h(x_0+na)=(n+1)a$) .
If $ a>0$, let $ p\in\mathbb{Z}$ such that $ x_0+pa\leq u<x_0+(p+1)a$. Since $ h(x)$ is strictly increasing, we have $ h(u)\geq h(x_0+pa)=x_0+(p+1)a>u$, and so $ h(u)>u$, which is impossible since we know that $ h(u)=u$
If $ a<0$, let $ p\in\mathbb{Z}$ such that $ x_0+(p+1)a\leq u<x_0+pa$. Since $ h(x)$ is strictly increasing, we have $ h(u)< h(x_0+pa)=x_0+(p+1)a\leq u$, and so $ h(u)<u$, which is impossible since we know that $ h(u)=u$
So it does not exist any $ x_0$ such that $ h(x_0)-x_0=a\neq 0$. And so $ \boxed{h(x)=x}$ $ \forall x$
Q.E.D.
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/24241}{drapt@}]
nice work :D
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/24241}{drapt@}]
i think there is a mistake;$ h(x_0+na)=(n+1)a$ is not true ,because for $ n=0$ we have $ f(x_0)=a$
\end{solution}
\begin{solution}[by \href{https://artofproblemsolving.com/community/user/29428}{pco}]
\begin{tcolorbox}i think there is a mistake;$ h(x_0 + na) = (n + 1)a$ is not true ,because for $ n = 0$ we have $ f(x_0) = a$\end{tcolorbox}
Yes, this is just a copy mistake : $ h(x_0 + na) = x_0+(n + 1)a$
Same correction on the next line.
\end{solution}
*******************************************************************************