-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathLM_data_filtering.py
87 lines (77 loc) · 2.54 KB
/
LM_data_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from pathlib import Path
import re
import random
import argparse
import os
import argparse
from fast_bleu import SelfBLEU
def read_conll(file_path):
file_path = Path(file_path)
raw_text = file_path.read_text().strip()
raw_docs = re.split(r'\n\t?\n', raw_text)
token_docs = []
tag_docs = []
for doc in raw_docs:
tokens = []
tags = []
for line in doc.split('\n'):
items = line.split()
if len(items) == 2:
token, tag = items
tokens.append(token)
tags.append(tag)
token_docs.append(tokens)
tag_docs.append(tags)
return token_docs, tag_docs
parser = argparse.ArgumentParser("Filtering LM-generated data")
parser.add_argument(
"--data-path", nargs='+', required=True, help="Path to the main training files."
)
parser.add_argument(
"--output-path", nargs='+', required=True, help="Path to the output files."
)
if __name__ == "__main__":
_A = parser.parse_args()
token_docs, tag_docs = [], []
for path_ in _A.data_path:
words, tags = read_conll(path_)
token_docs += words
tag_docs += tags
print("input data size %d" % len(token_docs))
str_set = set()
for word, tag in zip(token_docs, tag_docs):
str_ = ' '.join(word) + '\t' + ' '.join(tag)
str_set.add(str_)
print("after filtering duplicated sample %d" % len(str_set))
word2tag_dict = {}
for str_ in str_set:
word, tag = str_.split('\t')
if word not in word2tag_dict:
word2tag_dict[word] = []
word2tag_dict[word].append(tag)
word2tag_dict = {k: v for (k, v) in word2tag_dict.items() if len(v) == 1}
print("after filtering sample with multiple tag sequence %d" % len(word2tag_dict))
output_list_writer = [open(o_path, 'w') for o_path in _A.output_path]
index = 0
bio_words = []
for word_seq in word2tag_dict:
if len(word2tag_dict[word_seq]) == 1:
words = word_seq.split()
tags = word2tag_dict[word_seq][0].split()
if len(words) == len(tags):
out = output_list_writer[index % len(output_list_writer)]
bio_words.append(words)
for g, l in zip(words, tags):
out.write("%s %s\n" % (g, l))
out.write("\n")
index += 1
for out in output_list_writer:
out.close()
ave_length = sum([len(v) for v in bio_words]) / len(bio_words)
print("Generated Length %.2f" % ave_length)
weights = {'bigram': (1/2., 1/2.), 'trigram': (1/3., 1/3., 1/3.)}
self_bleu = SelfBLEU(bio_words, weights)
score = self_bleu.get_score()
self_b3 = score['trigram']
self_b3_value = 100 * sum(self_b3) / len(self_b3)
print("Self BLEU %.2f" % self_b3_value)