-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmetrics.py
30 lines (24 loc) · 1.59 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import tensorflow as tf
from tensorflow.keras import backend
def TripletLossAccuracy(top_n=1):
# y_true: (1D array) - [1, 1, 3, 4, 5, 5]
# y_pred: (2D array) - embeddings of each image
# returns the accuracy of the predictions within the batch (i.e., is 1st image most similar to the 2nd one?)
# note - in case of no positive example as for id=3 and id=4 then we don't add it as bad record
def triplet_loss_accuracy(y_true, y_pred):
lshape = tf.shape(y_true)
batch_size = lshape[0]
y_true = tf.reshape(y_true, [batch_size, 1])
adjacency = tf.math.equal(y_true, tf.transpose(y_true))
adjacency = tf.cast(adjacency, dtype=tf.float32)
pdist_matrix = backend.sqrt(backend.sum((y_pred - y_pred[:, None]) ** 2, axis=-1))
total_positive = tf.math.count_nonzero(backend.sum(adjacency, axis=-1) - 1, dtype=tf.float32)
top_n_matches = tf.argsort(tf.where(pdist_matrix > 0, pdist_matrix, tf.ones_like(pdist_matrix) * float('inf')))[:, :top_n]
y = tf.range(batch_size)
tiled_y = tf.tile(y[:, None], [1, top_n])
indices = tf.reshape(tf.transpose(tf.stack([tiled_y, top_n_matches])), (-1, 2))
tensor_best_n = tf.zeros(shape=(batch_size, batch_size), dtype=tf.float32)
tensor_best_n = tf.tensor_scatter_nd_update(tensor_best_n, indices, tf.ones(len(indices), dtype=tf.float32))
correct_predictions = tf.math.count_nonzero(backend.sum(adjacency * tensor_best_n, axis=-1), dtype=tf.float32)
return correct_predictions / (total_positive + backend.epsilon())
return triplet_loss_accuracy