-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathshow.py
126 lines (101 loc) · 4.75 KB
/
show.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""Visualize the inference result of the trained model."""
import argparse
import torch
import matplotlib.pyplot as plt
from backbone import EfficientDetBackbone
import cv2
import numpy as np
from efficientdet.rotation_utils import Rotation_BBoxTransform, ClipBoxes, BBoxAddScores
from utils.rotation_utils import eval_preprocess, invert_affine, postprocess, STANDARD_COLORS, standard_to_bgr
# anchor settings with k-means results
anchor_ratios = [(1.0, 1.0), (0.4, 1.1), (0.7, 2.5), (1.8, 0.5)]
anchor_scales = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]
# Different resolution for different EfficientDet families
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
# category name list
obj_list = ['large-vehicle', 'small-vehicle']
color_list = standard_to_bgr(STANDARD_COLORS)
def get_args():
parser = argparse.ArgumentParser('Show the inference result of trained model.')
parser.add_argument('--compound_coef', type=int, default=0, help='coefficients of efficientdet')
parser.add_argument('--img_path', type=str, default='./test/demo2.jpg', help='the path of the inference image')
parser.add_argument('--use_cuda', type=bool, default=True)
parser.add_argument('--score_threshold', type=float, default=0.6)
parser.add_argument('--iou_threshold', type=float, default=0.2)
parser.add_argument('--pth', type=str, default='./logs/rotation_vehicles/efficientdet-d0_48_3200.pth',
help='the pth file of trained model.')
parser.add_argument('--output_path', type=str, default='./test', help='the output path of the inference image.')
parser.add_argument('--device', type=int, default=0, help='the number of GPU device.')
args = parser.parse_args()
return args
def OPENCV2xywh(opencv_list):
poly_list = []
opencv_list[:5] = map(float, opencv_list[:5])
# x_c, y_c = int(opencv_list[0]), int(opencv_list[1])
x_c = int((opencv_list[0] + opencv_list[2]) / 2.)
y_c = int((opencv_list[1] + opencv_list[3]) / 2.)
# width, height = int(opencv_list[2]), int(opencv_list[3])
width = int(opencv_list[2] - opencv_list[0])
height = int(opencv_list[3] - opencv_list[1])
theta = int(opencv_list[4])
rect = ((x_c, y_c), (width, height), theta)
poly = np.float32(cv2.boxPoints(rect))
poly_list.append(poly)
return poly_list
def display(preds, imgs, imshow=True, imwrite=False):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
continue
imgs[i] = imgs[i].copy()
for j in range(len(preds[i]['rois'])):
"""preds[i]['rois'][j] = [xmin, ymin, xmax, ymax, theta]"""
xmin, ymin, xmax, ymax, theta = preds[i]['rois'][j].astype(np.float)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
color = [0, 0, 255]
# rotation detection code
rect = OPENCV2xywh([xmin, ymin, xmax, ymax, theta])
rect = np.int0(rect)
rect = np.array(rect)
cv2.drawContours(
image=imgs[i],
contours=rect,
contourIdx=-1,
color=color,
thickness=2)
if imshow:
imgs[i] = cv2.cvtColor(imgs[i], cv2.COLOR_BGR2RGB)
plt.imshow(imgs[i])
plt.show()
if imwrite:
name = (args.img_path.split('/')[-1]).split('.')[0]
cv2.imwrite(f'{args.output_path}/{name}_detected.jpg', imgs[i])
def show(args):
input_size = input_sizes[args.compound_coef]
ori_imgs, framed_imgs, framed_metas = eval_preprocess(args.img_path, max_size=input_size)
if args.use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32).permute(0, 3, 1, 2)
model = EfficientDetBackbone(compound_coef=args.compound_coef, num_classes=len(obj_list),
ratios=anchor_ratios, scales=anchor_scales)
model.load_state_dict(torch.load(args.pth, map_location='cpu'))
model.requires_grad_(False)
model.eval()
if args.use_cuda:
model = model.cuda(device=args.device)
with torch.no_grad():
features, regression, classification, anchors = model(x)
regressBoxes = Rotation_BBoxTransform()
clipBoxes = ClipBoxes()
addBoxes = BBoxAddScores()
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes, addBoxes,
args.score_threshold, args.iou_threshold)
out = invert_affine(framed_metas, out)
display(out, ori_imgs, imshow=True, imwrite=False)
if __name__ == '__main__':
args = get_args()
show(args)