-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_val.py
666 lines (539 loc) · 22.2 KB
/
train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
"""
License: Apache 2.0
Author: Ashley Gritzman
E-mail: ashley.gritzman@za.ibm.com
"""
# Public modules
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.python import debug as tf_debug # for debugging
import numpy as np
import time
import sys
import os
import re # for regular expressions
# My modules
from config import FLAGS
import config as conf
import models as mod
import metrics as met
import utils as utl
# Get logger that has already been created in config.py
import daiquiri
logger = daiquiri.getLogger(__name__)
def main(args):
"""Run training and validation.
1. Build graphs
1.1 Training graph to run on multiple GPUs
1.2 Validation graph to run on multiple GPUs
2. Configure sessions
2.1 Train
2.2 Validate
3. Main loop
3.1 Train
3.2 Write summary
3.3 Save model
3.4 Validate model
Author:
Ashley Gritzman
"""
# Set reproduciable random seed
tf.set_random_seed(1234)
# Directories
train_dir, train_summary_dir = conf.setup_train_directories()
# Logger
conf.setup_logger(logger_dir=train_dir, name="logger_train.txt")
# Hyperparameters
conf.load_or_save_hyperparams(train_dir)
# Get dataset hyperparameters
logger.info('Using dataset: {}'.format(FLAGS.dataset))
dataset_size_train = conf.get_dataset_size_train(FLAGS.dataset)
dataset_size_val = conf.get_dataset_size_validate(FLAGS.dataset)
build_arch = conf.get_dataset_architecture(FLAGS.dataset)
num_classes = conf.get_num_classes(FLAGS.dataset)
create_inputs_train = conf.get_create_inputs(FLAGS.dataset, mode="train")
create_inputs_val = conf.get_create_inputs(FLAGS.dataset, mode="validate")
#*****************************************************************************
# 1. BUILD GRAPHS
#*****************************************************************************
#----------------------------------------------------------------------------
# GRAPH - TRAIN
#----------------------------------------------------------------------------
logger.info('BUILD TRAIN GRAPH')
g_train = tf.Graph()
with g_train.as_default(), tf.device('/cpu:0'):
# Get global_step
global_step = tf.train.get_or_create_global_step()
# Get batches per epoch
num_batches_per_epoch = int(dataset_size_train / FLAGS.batch_size)
# In response to a question on OpenReview, Hinton et al. wrote the
# following:
# "We use an exponential decay with learning rate: 3e-3, decay_steps: 20000, # decay rate: 0.96."
# https://openreview.net/forum?id=HJWLfGWRb¬eId=ryxTPFDe2X
lrn_rate = tf.train.exponential_decay(learning_rate = FLAGS.lrn_rate,
global_step = global_step,
decay_steps = 20000,
decay_rate = 0.96)
tf.summary.scalar('learning_rate', lrn_rate)
opt = tf.train.AdamOptimizer(learning_rate=lrn_rate)
# Get batch from data queue. Batch size is FLAGS.batch_size, which is then
# divided across multiple GPUs
input_dict = create_inputs_train()
batch_x = input_dict['image']
batch_labels = input_dict['label']
# AG 03/10/2018: Split batch for multi gpu implementation
# Each split is of size FLAGS.batch_size / FLAGS.num_gpus
# See: https://github.com/naturomics/CapsNet-Tensorflow/blob/master/
# dist_version/distributed_train.py
splits_x = tf.split(
axis=0,
num_or_size_splits=FLAGS.num_gpus,
value=batch_x)
splits_labels = tf.split(
axis=0,
num_or_size_splits=FLAGS.num_gpus,
value=batch_labels)
#--------------------------------------------------------------------------
# MULTI GPU - TRAIN
#--------------------------------------------------------------------------
# Calculate the gradients for each model tower
tower_grads = []
tower_losses = []
tower_logits = []
reuse_variables = None
for i in range(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
logger.info('TOWER %d' % i)
#with slim.arg_scope([slim.model_variable, slim.variable],
# device='/cpu:0'):
with slim.arg_scope([slim.variable], device='/cpu:0'):
loss, logits = tower_fn(
build_arch,
splits_x[i],
splits_labels[i],
scope,
num_classes,
reuse_variables=reuse_variables,
is_train=True)
# Don't reuse variable for first GPU, but do reuse for others
reuse_variables = True
# Compute gradients for one GPU
grads = opt.compute_gradients(loss)
# Keep track of the gradients across all towers.
tower_grads.append(grads)
# Keep track of losses and logits across for each tower
tower_logits.append(logits)
tower_losses.append(loss)
# Loss for each tower
tf.summary.scalar("loss", loss)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grad = average_gradients(tower_grads)
# See: https://stackoverflow.com/questions/40701712/how-to-check-nan-in-
# gradients-in-tensorflow-when-updating
grad_check = ([tf.check_numerics(g, message='Gradient NaN Found!')
for g, _ in grad if g is not None]
+ [tf.check_numerics(loss, message='Loss NaN Found')])
# Apply the gradients to adjust the shared variables
with tf.control_dependencies(grad_check):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = opt.apply_gradients(grad, global_step=global_step)
# Calculate mean loss
loss = tf.reduce_mean(tower_losses)
# Calculate accuracy
logits = tf.concat(tower_logits, axis=0)
acc = met.accuracy(logits, batch_labels)
# Prepare predictions and one-hot labels
probs = tf.nn.softmax(logits=logits)
labels_oh = tf.one_hot(batch_labels, num_classes)
# Group metrics together
# See: https://cs230-stanford.github.io/tensorflow-model.html
trn_metrics = {'loss' : loss,
'labels' : batch_labels,
'labels_oh' : labels_oh,
'logits' : logits,
'probs' : probs,
'acc' : acc,
}
# Reset and read operations for streaming metrics go here
trn_reset = {}
trn_read = {}
# Logging
tf.summary.scalar('trn_loss', loss)
tf.summary.scalar('trn_acc', acc)
# Set Saver
# AG 26/09/2018: Save all variables including Adam so that we can continue
# training from where we left off
# max_to_keep=None should keep all checkpoints
saver = tf.train.Saver(tf.global_variables(), max_to_keep=None)
# Display number of parameters
train_params = np.sum([np.prod(v.get_shape().as_list())
for v in tf.trainable_variables()]).astype(np.int32)
logger.info('Trainable Parameters: {}'.format(train_params))
# Set summary op
trn_summary = tf.summary.merge_all()
#----------------------------------------------------------------------------
# GRAPH - VALIDATION
#----------------------------------------------------------------------------
logger.info('BUILD VALIDATION GRAPH')
g_val = tf.Graph()
with g_val.as_default():
# Get global_step
global_step = tf.train.get_or_create_global_step()
num_batches_val = int(dataset_size_val / FLAGS.batch_size * FLAGS.val_prop)
# Get data
input_dict = create_inputs_val()
batch_x = input_dict['image']
batch_labels = input_dict['label']
# AG 10/12/2018: Split batch for multi gpu implementation
# Each split is of size FLAGS.batch_size / FLAGS.num_gpus
# See: https://github.com/naturomics/CapsNet-
# Tensorflow/blob/master/dist_version/distributed_train.py
splits_x = tf.split(
axis=0,
num_or_size_splits=FLAGS.num_gpus,
value=batch_x)
splits_labels = tf.split(
axis=0,
num_or_size_splits=FLAGS.num_gpus,
value=batch_labels)
#--------------------------------------------------------------------------
# MULTI GPU - VALIDATE
#--------------------------------------------------------------------------
# Calculate the logits for each model tower
tower_logits = []
reuse_variables = None
for i in range(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
with slim.arg_scope([slim.variable], device='/cpu:0'):
loss, logits = tower_fn(
build_arch,
splits_x[i],
splits_labels[i],
scope,
num_classes,
reuse_variables=reuse_variables,
is_train=False)
# Don't reuse variable for first GPU, but do reuse for others
reuse_variables = True
# Keep track of losses and logits across for each tower
tower_logits.append(logits)
# Loss for each tower
tf.summary.histogram("val_logits", logits)
# Combine logits from all towers
logits = tf.concat(tower_logits, axis=0)
# Calculate metrics
val_loss = mod.spread_loss(logits, batch_labels)
val_acc = met.accuracy(logits, batch_labels)
# Prepare predictions and one-hot labels
val_probs = tf.nn.softmax(logits=logits)
val_labels_oh = tf.one_hot(batch_labels, num_classes)
# Group metrics together
# See: https://cs230-stanford.github.io/tensorflow-model.html
val_metrics = {'loss' : val_loss,
'labels' : batch_labels,
'labels_oh' : val_labels_oh,
'logits' : logits,
'probs' : val_probs,
'acc' : val_acc,
}
# Reset and read operations for streaming metrics go here
val_reset = {}
val_read = {}
tf.summary.scalar("val_loss", val_loss)
tf.summary.scalar("val_acc", val_acc)
# Saver
saver = tf.train.Saver(max_to_keep=None)
# Set summary op
val_summary = tf.summary.merge_all()
#****************************************************************************
# 2. SESSIONS
#****************************************************************************
#----- SESSION TRAIN -----#
# Session settings
sess_train = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False),
graph=g_train)
# Debugger
# AG 05/06/2018: Debugging using either command line or TensorBoard
if FLAGS.debugger is not None:
# sess = tf_debug.LocalCLIDebugWrapperSession(sess)
sess_train = tf_debug.TensorBoardDebugWrapperSession(sess_train,
FLAGS.debugger)
with g_train.as_default():
sess_train.run([tf.global_variables_initializer(),
tf.local_variables_initializer()])
# Restore previous checkpoint
# AG 26/09/2018: where should this go???
if FLAGS.load_dir is not None:
load_dir_checkpoint = os.path.join(FLAGS.load_dir, "train", "checkpoint")
prev_step = load_training(saver, sess_train, load_dir_checkpoint)
else:
prev_step = 0
# Create summary writer, and write the train graph
summary_writer = tf.summary.FileWriter(train_summary_dir,
graph=sess_train.graph)
#----- SESSION VALIDATION -----#
sess_val = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False),
graph=g_val)
with g_val.as_default():
sess_val.run([tf.local_variables_initializer(),
tf.global_variables_initializer()])
#****************************************************************************
# 3. MAIN LOOP
#****************************************************************************
SUMMARY_FREQ = 100
SAVE_MODEL_FREQ = num_batches_per_epoch # 500
VAL_FREQ = num_batches_per_epoch # 500
PROFILE_FREQ = 5
for step in range(prev_step, FLAGS.epoch * num_batches_per_epoch + 1):
#for step in range(0,3):
# AG 23/05/2018: limit number of iterations for testing
# for step in range(100):
epoch_decimal = step/num_batches_per_epoch
epoch = int(np.floor(epoch_decimal))
# TF queue would pop batch until no file
try:
# TRAIN
with g_train.as_default():
# With profiling
if (FLAGS.profile is True) and ((step % PROFILE_FREQ) == 0):
logger.info("Train with Profiling")
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
# Without profiling
else:
run_options = None
run_metadata = None
# Reset streaming metrics
if step % (num_batches_per_epoch/4) == 1:
logger.info("Reset streaming metrics")
sess_train.run([trn_reset])
# MAIN RUN
tic = time.time()
train_op_v, trn_metrics_v, trn_summary_v = sess_train.run(
[train_op, trn_metrics, trn_summary],
options=run_options,
run_metadata=run_metadata)
toc = time.time()
# Read streaming metrics
trn_read_v = sess_train.run(trn_read)
# Write summary for profiling
if run_options is not None:
summary_writer.add_run_metadata(
run_metadata, 'step{:d}'.format(step))
# Logging
logger.info('TRN'
+ ' e-{:d}'.format(epoch)
+ ' stp-{:d}'.format(step)
+ ' {:.2f}s'.format(toc - tic)
+ ' loss: {:.4f}'.format(trn_metrics_v['loss'])
+ ' acc: {:.2f}%'.format(trn_metrics_v['acc']*100)
)
except KeyboardInterrupt:
sess_train.close()
sess_val.close()
sys.exit()
except tf.errors.InvalidArgumentError as e:
logger.warning('%d iteration contains NaN gradients. Discard.' % step)
logger.error(str(e))
continue
else:
# WRITE SUMMARY
if (step % SUMMARY_FREQ) == 0:
logger.info("Write Train Summary")
with g_train.as_default():
# Summaries from graph
summary_writer.add_summary(trn_summary_v, step)
# SAVE MODEL
if (step % SAVE_MODEL_FREQ) == 100:
logger.info("Save Model")
with g_train.as_default():
train_checkpoint_dir = train_dir + '/checkpoint'
if not os.path.exists(train_checkpoint_dir):
os.makedirs(train_checkpoint_dir)
# Save ckpt from train session
ckpt_path = os.path.join(train_checkpoint_dir, 'model.ckpt')
saver.save(sess_train, ckpt_path, global_step=step)
# VALIDATE MODEL
if (step % VAL_FREQ) == 100:
#----- Validation -----#
with g_val.as_default():
logger.info("Start Validation")
# Restore ckpt to val session
latest_ckpt = tf.train.latest_checkpoint(train_checkpoint_dir)
saver.restore(sess_val, latest_ckpt)
# Reset accumulators
accuracy_sum = 0
loss_sum = 0
sess_val.run(val_reset)
for i in range(num_batches_val):
val_metrics_v, val_summary_str_v = sess_val.run(
[val_metrics, val_summary])
# Update
accuracy_sum += val_metrics_v['acc']
loss_sum += val_metrics_v['loss']
# Read
val_read_v = sess_val.run(val_read)
# Get checkpoint number
ckpt_num = re.split('-', latest_ckpt)[-1]
# Logging
logger.info('VAL ckpt-{}'.format(ckpt_num)
+ ' bch-{:d}'.format(i)
+ ' cum_acc: {:.2f}%'.format(accuracy_sum/(i+1)*100)
+ ' cum_loss: {:.4f}'.format(loss_sum/(i+1))
)
# Average across batches
ave_acc = accuracy_sum / num_batches_val
ave_loss = loss_sum / num_batches_val
logger.info('VAL ckpt-{}'.format(ckpt_num)
+ ' avg_acc: {:.2f}%'.format(ave_acc*100)
+ ' avg_loss: {:.4f}'.format(ave_loss)
)
logger.info("Write Val Summary")
summary_val = tf.Summary()
summary_val.value.add(tag="val_acc", simple_value=ave_acc)
summary_val.value.add(tag="val_loss", simple_value=ave_loss)
summary_writer.add_summary(summary_val, step)
# Close (main loop)
sess_train.close()
sess_val.close()
sys.exit()
def tower_fn(build_arch,
x,
y,
scope,
num_classes,
is_train=True,
reuse_variables=None):
"""Model tower to be run on each GPU.
Author:
Ashley Gritzman 27/11/2018
Args:
build_arch:
x: split of batch_x allocated to particular GPU
y: split of batch_y allocated to particular GPU
scope:
num_classes:
is_train:
reuse_variables: False for the first GPU, and True for subsequent GPUs
Returns:
loss: mean loss across samples for one tower (scalar)
scores:
If the architecture is a capsule network, then the scores are the output
activations of the class caps.
If the architecture is the CNN baseline, then the scores are the logits of
the final layer.
(samples_per_tower, n_classes)
(64/4=16, 5)
"""
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
output = build_arch(x, is_train, num_classes=num_classes)
scores = output['scores']
loss = mod.total_loss(scores, y)
return loss, scores
def average_gradients(tower_grads):
"""Compute average gradients across all towers.
Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Credit:
https://github.com/naturomics/CapsNet-
Tensorflow/blob/master/dist_version/distributed_train.py
Args:
tower_grads:
List of lists of (gradient, variable) tuples. The outer list is over
individual gradients. The inner list is over the gradient calculation for each tower.
Returns:
average_grads:
List of pairs of (gradient, variable) where the gradient has been
averaged across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def extract_step(path):
"""Returns the step from the file format name of Tensorflow checkpoints.
Credit:
Sara Sabour
https://github.com/Sarasra/models/blob/master/research/capsules/
experiment.py
Args:
path: The checkpoint path returned by tf.train.get_checkpoint_state.
The format is: {ckpnt_name}-{step}
Returns:
The last training step number of the checkpoint.
"""
file_name = os.path.basename(path)
return int(file_name.split('-')[-1])
def load_training(saver, session, load_dir):
"""Loads a saved model into current session or initializes the directory.
If there is no functioning saved model or FLAGS.restart is set, cleans the
load_dir directory. Otherwise, loads the latest saved checkpoint in load_dir
to session.
Author:
Ashley Gritzman 26/09/2018
Credit:
Adapted from Sara Sabour
https://github.com/Sarasra/models/blob/master/research/capsules/
experiment.py
Args:
saver: An instance of tf.train.saver to load the model in to the session.
session: An instance of tf.Session with the built-in model graph.
load_dir: The directory which is used to load the latest checkpoint.
Returns:
The latest saved step.
"""
if tf.gfile.Exists(load_dir):
ckpt = tf.train.get_checkpoint_state(load_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(session, ckpt.model_checkpoint_path)
prev_step = extract_step(ckpt.model_checkpoint_path)
logger.info("Restored checkpoint")
else:
raise IOError("""AG: load_ckpt directory exists but cannot find a valid
checkpoint to resore, consider using the reset flag""")
else:
raise IOError("AG: load_ckpt directory does not exist")
return prev_step
def find_checkpoint(load_dir, seen_step):
"""Finds the global step for the latest written checkpoint to the load_dir.
Credit:
Sara Sabour
https://github.com/Sarasra/models/blob/master/research/capsules/
experiment.py
Args:
load_dir: The directory address to look for the training checkpoints.
seen_step: Latest step which evaluation has been done on it.
Returns:
The latest new step in the load_dir and the file path of the latest model
in load_dir. If no new file is found returns -1 and None.
"""
ckpt = tf.train.get_checkpoint_state(load_dir)
if ckpt and ckpt.model_checkpoint_path:
global_step = extract_step(ckpt.model_checkpoint_path)
if int(global_step) != seen_step:
return int(global_step), ckpt.model_checkpoint_path
return -1, None
if __name__ == "__main__":
tf.app.run()