-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
136 lines (110 loc) · 5.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import glob
import pickle
from torch.utils.data.dataloader import DataLoader
from utils import *
from metrics import *
from model_baseline import TrajectoryModel
from model_groupwrapper import GPGraph
@torch.no_grad()
def test(SAMPLES=20, TRIALS=100):
global loader_test, model
model.eval()
ade_all, fde_all, col_all, tcc_all = [], [], [], []
for batch in tqdm(loader_test):
obs_traj, pred_traj, obs_traj_rel, pred_traj_rel = [tensor.cuda(non_blocking=True) for tensor in batch[:4]]
V_obs, V_tr = [tensor.cuda(non_blocking=True) for tensor in batch[-2:]]
V_obs_abs = obs_traj.permute(0, 2, 3, 1)
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, indices = model(V_obs_abs, V_obs_tmp)
V_pred = V_pred.permute(0, 2, 3, 1)
V_pred = V_pred.squeeze()
V_obs_traj = obs_traj.permute(0, 3, 1, 2).squeeze(dim=0)
V_pred_traj_gt = pred_traj.permute(0, 3, 1, 2).squeeze(dim=0)
mu, cov = generate_statistics_matrices(V_pred.squeeze(dim=0))
ade_stack, fde_stack, tcc_stack, col_stack = [], [], [], []
# Reduce randomness by repeating the evaluation process TRIALS=100 times.
# To evaluate the execution time, TRIALS must be set to 1.
for trial in range(TRIALS):
sample_level = 'group' # ['scene', 'pedestrian', 'group']
if sample_level == 'scene':
r_sample = random.randn(1, SAMPLES, 2)
elif sample_level == 'pedestrian':
r_sample = random.randn(indices.size(0), SAMPLES, 2)
elif sample_level == 'group':
r_sample = random.randn(indices.unique().size(0), SAMPLES, 2)[indices.detach().cpu().numpy()]
r_sample = r_sample.take(indices.detach().cpu().numpy(), axis=0)
else:
raise NotImplementedError
r_sample = torch.Tensor(r_sample).to(dtype=mu.dtype, device=mu.device)
r_sample = r_sample.permute(1, 0, 2).unsqueeze(dim=1).expand((SAMPLES,) + mu.shape)
V_pred_sample = mu + (torch.cholesky(cov) @ r_sample.unsqueeze(dim=-1)).squeeze(dim=-1)
V_absl = V_pred_sample.cumsum(dim=1) + V_obs_traj[[-1], :, :]
ADEs, FDEs, COLs, TCCs = compute_batch_metric(V_absl, V_pred_traj_gt)
ade_stack.append(ADEs.detach().cpu().numpy())
fde_stack.append(FDEs.detach().cpu().numpy())
col_stack.append(COLs.detach().cpu().numpy())
tcc_stack.append(TCCs.detach().cpu().numpy())
ade_all.append(np.array(ade_stack))
fde_all.append(np.array(fde_stack))
col_all.append(np.array(col_stack))
tcc_all.append(np.array(tcc_stack))
ade_all = np.concatenate(ade_all, axis=1)
fde_all = np.concatenate(fde_all, axis=1)
col_all = np.concatenate(col_all, axis=1)
tcc_all = np.concatenate(tcc_all, axis=1)
mean_ade, mean_fde = ade_all.mean(axis=0).mean(), fde_all.mean(axis=0).mean()
mean_col, mean_tcc = col_all.mean(axis=0).mean(), tcc_all.mean(axis=0).mean()
return mean_ade, mean_fde, mean_col, mean_tcc
paths = ['./checkpoints/GPGraph-SGCN/*']
SAMPLES = 20
print("*" * 50)
print('Number of samples:', SAMPLES)
print("*" * 50)
for feta in range(len(paths)):
SCENE_ls, ADE_ls, FDE_ls, COL_ls, TCC_ls = [], [], [], [], []
path = paths[feta]
exps = glob.glob(path)
print('Model being tested are:', exps)
for exp_path in exps:
print("*" * 50)
print("Evaluating model:", exp_path)
model_path = exp_path + '/val_best.pth'
args_path = exp_path + '/args.pkl'
with open(args_path, 'rb') as f:
args = pickle.load(f)
stats = exp_path + '/constant_metrics.pkl'
with open(stats, 'rb') as f:
cm = pickle.load(f)
# print("Stats:", cm)
# Data prep
obs_seq_len = 8
pred_seq_len = 12
data_set = './dataset/' + args.dataset + '/'
dset_test = TrajectoryDataset(data_set + 'test/', obs_len=obs_seq_len, pred_len=pred_seq_len, skip=1)
loader_test = DataLoader(dset_test, batch_size=1, shuffle=False, num_workers=0)
# Defining the model
base_model = TrajectoryModel(number_asymmetric_conv_layer=7, embedding_dims=64, number_gcn_layers=1, dropout=0,
obs_len=8, pred_len=12, n_tcn=5, out_dims=5).cuda()
model = GPGraph(baseline_model=base_model, in_channels=2, out_channels=5,
obs_seq_len=8, pred_seq_len=12,
d_type='learned_l2norm', d_th='learned', mix_type='mlp',
group_type=(True, True, True), weight_share=True).cuda()
model.load_state_dict(torch.load(model_path))
print("Testing...", end=' ')
ADE, FDE, COL, TCC = test()
ADE_ls.append(ADE)
FDE_ls.append(FDE)
COL_ls.append(COL)
TCC_ls.append(TCC)
SCENE_ls.append(args.dataset)
print("Scene: {} ADE: {:.8f} FDE: {:.8f} COL: {:.8f}, TCC: {:.8f}".format(args.dataset, ADE, FDE, COL, TCC))
print("*" * 50)
ADE_ls, FDE_ls, COL_ls, TCC_ls = np.array(ADE_ls), np.array(FDE_ls), np.array(COL_ls), np.array(TCC_ls)
print("Average ADE: {:.8f} FDE: {:.8f} COL: {:.8f}, TCC: {:.8f}".format(ADE_ls.mean(), FDE_ls.mean(),
COL_ls.mean(), TCC_ls.mean()))
print("*" * 50)
print('SCENE\tADE \tFDE \tCOL \tTCC')
for scene, ade, fde, col, tcc in zip(SCENE_ls, ADE_ls, FDE_ls, COL_ls, TCC_ls):
print('{} \t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'.format(scene.upper(), ade, fde, col, tcc))
print('AVG \t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'.format(ADE_ls.mean(), FDE_ls.mean(), COL_ls.mean(), TCC_ls.mean()))
print("*" * 50)