-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathFISRnet.py
1115 lines (956 loc) · 62.8 KB
/
FISRnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
from __future__ import print_function
from PIL import Image
from SSIM_PIL import compare_ssim
from datetime import datetime
from ops import *
import matplotlib.pyplot as plt
import glob
import time
import math
import utils
class FISRnet(object):
model_name = "FISRnet"
def __init__(self, sess, args):
self.sess = sess
self.args = args
self.checkpoint_dir = args.checkpoint_dir
self.test_img_dir = args.test_img_dir
self.text_dir = args.text_dir
self.log_dir = args.log_dir
self.train_data_path = args.train_data_path
self.train_flow_data_path = args.train_flow_data_path
self.train_flow_ss2_data_path = args.train_flow_ss2_data_path
self.train_warped_data_path = args.train_warped_data_path
self.train_wapred_ss2_data_path = args.train_wapred_ss2_data_path
self.train_label_path = args.train_label_path
self.test_data_path = args.test_data_path
self.test_flow_data_path = args.test_flow_data_path # check
self.test_warped_data_path = args.test_warped_data_path # check
self.test_label_path = args.test_label_path
self.exp_num = args.exp_num
self.scale_factor = args.scale_factor
""" Hyperparameters """
self.epoch = args.epoch
self.init_lr = args.init_lr
self.freq_display = args.freq_display
self.lr_type = args.lr_type
self.lr_stair_decay_points = args.lr_stair_decay_points
self.lr_decreasing_factor = args.lr_decreasing_factor
self.lr_linear_decay_point = args.lr_linear_decay_point
self.batch_size = args.batch_size
self.val_batch_size = args.val_batch_size
self.val_data_size = args.val_data_size
self.n_train_img_showed = args.n_train_img_showed
""" Coefficients of loss or penalty """
self.recn_lambda = args.recn_lambda
self.tm1_lambda = args.tm1_lambda
self.tm2_lambda = args.tm2_lambda
self.tmm_lambda = args.tmm_lambda
self.td_lambda = args.td_lambda
self.ss2_lambda = args.ss2_lambda
""" Testing settings """
self.test_patch = args.test_patch
self.test_input_size = args.test_input_size
self.FISR_test_patch = args.FISR_test_patch
""" Making settings """
self.frame_folder_path = args.frame_folder_path
self.FISR_input_size = args.FISR_input_size
self.frame_num = args.frame_num
self.FISR_test_patch = args.FISR_test_patch
""" Print all 'args' information """
print('Model arguments, [{:s}]'.format((str(datetime.now())[:-7])))
for arg in vars(args):
print('# {} : {}'.format(arg, getattr(args, arg)))
def model(self, img, sf, reuse=False, scope="model"):
ch = 64
sz = img.shape
skip = dict()
with tf.variable_scope(scope, reuse=reuse):
""" Multi-scale network """
with tf.variable_scope('level_1'):
""" x(1/4) """
img_l1 = tf.image.resize_images(img, (sz[1]//4, sz[2]//4),method=tf.image.ResizeMethod.BICUBIC)
# Encoder
with tf.variable_scope('enc'):
n, skip[0] = Enc_level_res(img_l1, sz[-1], ch, 2, 'level_0')
n, skip[1] = Enc_level_res(n, ch, ch * 2, 2, 'level_1')
n, skip[2] = Enc_level_res(n, ch * 2, ch * 4, 2, 'level_2')
# Bottleneck
n = Bottleneck_res(n, ch * 4, ch * 8, 'bottleneck')
# Decoder
with tf.variable_scope('dec'):
n = Dec_level_res(n, skip[2], ch * 8, ch * 4, 'level_2', (sz[1] // 16, sz[2] // 16))
n = Dec_level_res(n, skip[1], ch * 4, ch * 2, 'level_1', (sz[1] // 8, sz[2] // 8))
n = Dec_level_res(n, skip[0], ch * 2, ch, 'level_0', (sz[1] // 4, sz[2] // 4))
# Final branches for FI-SR & SR only
with tf.variable_scope('FI-SR'):
n2 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n2 = res_block(n2, ch, 'res_block/0')
n2 = Conv2d(relu(n2), [3, 3, ch, ch * sf * sf], 'conv/1')
n2 = tf.depth_to_space(relu(n2), sf, name='pixel_shuffle')
pred_FISR = Conv2d(relu(n2), [3, 3, ch, 6], 'conv/2')
with tf.variable_scope('SR'):
n3 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n3 = res_block(n3, ch, 'res_block/0')
n3 = Conv2d(relu(n3), [3, 3, ch, ch * sf * sf], 'conv/1')
n3 = tf.depth_to_space(relu(n3), sf, name='pixel_shuffle')
pred_SR = Conv2d(n3, [3, 3, ch, 3], 'conv/2')
fr1, fr2 = tf.split(pred_FISR, [3, 3], 3)
pred_l1 = tf.concat([fr1, pred_SR, fr2], axis=3)
with tf.variable_scope('level_2'):
""" x(1/2) """
img_l2 = tf.image.resize_images(img, (sz[1]//2, sz[2]//2),method=tf.image.ResizeMethod.BICUBIC)
img_l2 = tf.concat((img_l2, pred_l1), axis=3)
# Encoder
with tf.variable_scope('enc'):
n, skip[0] = Enc_level_res(img_l2, sz[-1]+9, ch, 2, 'level_0')
n, skip[1] = Enc_level_res(n, ch, ch * 2, 2, 'level_1')
n, skip[2] = Enc_level_res(n, ch * 2, ch * 4, 2, 'level_2')
# Bottleneck
n = Bottleneck_res(n, ch * 4, ch * 8, 'bottleneck')
# Decoder
with tf.variable_scope('dec'):
n = Dec_level_res(n, skip[2], ch * 8, ch * 4, 'level_2', (sz[1] // 8, sz[2] // 8))
n = Dec_level_res(n, skip[1], ch * 4, ch * 2, 'level_1', (sz[1] // 4, sz[2] // 4))
n = Dec_level_res(n, skip[0], ch * 2, ch, 'level_0', (sz[1] // 2, sz[2] // 2))
# Final branches for FI-SR & SR only
with tf.variable_scope('FI-SR'):
n2 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n2 = res_block(n2, ch, 'res_block/0')
n2 = Conv2d(relu(n2), [3, 3, ch, ch * sf * sf], 'conv/1')
n2 = tf.depth_to_space(relu(n2), sf, name='pixel_shuffle')
pred_FISR = Conv2d(relu(n2), [3, 3, ch, 6], 'conv/2')
with tf.variable_scope('SR'):
n3 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n3 = res_block(n3, ch, 'res_block/0')
n3 = Conv2d(relu(n3), [3, 3, ch, ch * sf * sf], 'conv/1')
n3 = tf.depth_to_space(relu(n3), sf, name='pixel_shuffle')
pred_SR = Conv2d(n3, [3, 3, ch, 3], 'conv/2')
fr1, fr2 = tf.split(pred_FISR, [3, 3], 3)
pred_l2 = tf.concat([fr1, pred_SR, fr2], axis=3)
with tf.variable_scope('level_3'):
""" original level """
img_l3 = tf.concat((img, pred_l2), axis=3)
# Encoder
with tf.variable_scope('enc'):
n, skip[0] = Enc_level_res(img_l3, sz[-1]+9, ch, 2, 'level_0')
n, skip[1] = Enc_level_res(n, ch, ch * 2, 2, 'level_1')
n, skip[2] = Enc_level_res(n, ch * 2, ch * 4, 2, 'level_2')
# Bottleneck
n = Bottleneck_res(n, ch * 4, ch * 8, 'bottleneck')
# Decoder
with tf.variable_scope('dec'):
n = Dec_level_res(n, skip[2], ch * 8, ch * 4, 'level_2', (sz[1] // 4, sz[2] // 4))
n = Dec_level_res(n, skip[1], ch * 4, ch * 2, 'level_1', (sz[1] // 2, sz[2] // 2))
n = Dec_level_res(n, skip[0], ch * 2, ch, 'level_0', (sz[1], sz[2]))
# Final branches for FI-SR & SR only
with tf.variable_scope('FI-SR'):
n2 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n2 = res_block(n2, ch, 'res_block/0')
n2 = Conv2d(relu(n2), [3, 3, ch, ch * sf * sf], 'conv/1')
n2 = tf.depth_to_space(relu(n2), sf, name='pixel_shuffle')
pred_FISR = Conv2d(relu(n2), [3, 3, ch, 6], 'conv/2')
with tf.variable_scope('SR'):
n3 = Conv2d(n, [3, 3, ch, ch], 'conv/0')
n3 = res_block(n3, ch, 'res_block/0')
n3 = Conv2d(relu(n3), [3, 3, ch, ch * sf * sf], 'conv/1')
n3 = tf.depth_to_space(relu(n3), sf, name='pixel_shuffle')
pred_SR = Conv2d(n3, [3, 3, ch, 3], 'conv/2')
fr1, fr2 = tf.split(pred_FISR, [3, 3], 3)
pred_l3 = tf.concat([fr1, pred_SR, fr2], axis=3)
return pred_l1, pred_l2, pred_l3
def build_model(self):
""" Read training data """
data_path = self.train_data_path
label_path = self.train_label_path
flow_path = self.train_flow_data_path
flow_path_ss2 = self.train_flow_ss2_data_path
warp_path = self.train_warped_data_path
warp_path_ss2 = self.train_wapred_ss2_data_path
print(" Start to read 4K data.")
data, label = read_mat_file(data_path, label_path, 'LR_data', 'HR_data') # [B,N_seg,H,W,C]
print(" Successfully load.")
# 5dim, LR: [B, 5, 96, 96, 3], HR: [B, 7, 192, 192, 3]
data = merge_seq_dim(data) # 4dim, LR: [B, 96, 96, 3*5]
label = merge_seq_dim(label) # 4dim, LR: [B, 96, 96, 3*7]
self.data_sz = data.shape # LR: [B, 96, 96, 3*5]
self.label_sz = label.shape # LR: [B, 96*2, 96*2, 3*7]
print(" Start to read flow data.")
flow = read_flo_file_5dim(flow_path) # [N, 8, 96, 96, 2] => 8: numbers of bidirectional(x2) flows between 5 frames(stride1), 2: x,y directions
flow = merge_seq_dim(flow) # [N, 8, 96, 96, 2] => [N, 96, 96, 8*2]
flow = flow/self.data_sz[1]/2
flow_ss2 = read_flo_file_5dim(flow_path_ss2) # [N, 4, 96, 96, 2] => 4: numbers of bidirectional(x2) flows between 3 frames(stride2), 2: x,y directions
print(" Successfully load.")
flow_ss2 = merge_seq_dim(flow_ss2) # [N, 4, 96, 96, 2] => [N, 96, 96, 4*2]
flow_ss2 = flow_ss2/self.data_sz[1]/2
print(" Start to read warped data.")
warp = read_mat_file_warp(warp_path, 'pred')
warp_ss2 = read_mat_file_warp(warp_path_ss2, 'pred')
print(" Successfully load.")
warp = merge_seq_dim(warp)
warp_ss2 = merge_seq_dim(warp_ss2)
""" Split data into val/train """
self.data_val = data[-self.val_data_size:, :, :, :]
self.label_val = label[-self.val_data_size:, :, :, :]
self.flow_val = flow[-self.val_data_size:, :, :, :]
self.flow_ss2_val = flow_ss2[-self.val_data_size:, :, :, :]
self.warp_val = warp[-self.val_data_size:, :, :, :]
self.warp_ss2_val = warp_ss2[-self.val_data_size:, :, :, :]
self.data = data[:-self.val_data_size, :, :, :]
self.label = label[:-self.val_data_size, :, :, :]
self.flow = flow[:-self.val_data_size, :, :, :]
self.flow_ss2 = flow_ss2[:-self.val_data_size, :, :, :]
self.warp = warp[:-self.val_data_size, :, :, :]
self.warp_ss2 = warp_ss2[:-self.val_data_size, :, :, :]
# calculate number of iterations
self.train_iter = math.floor((self.data_sz[0] - self.val_data_size) / self.batch_size)
self.val_iter = math.floor(self.val_data_size / self.val_batch_size)
""" Learning rate schedule """
self.global_step = tf.Variable(initial_value=0, trainable=False)
if self.lr_type == "stair_decay":
self.epoch_lr_to_be_decayed_boundaries = [y * (self.train_iter) for y in
self.lr_stair_decay_points]
self.epoch_lr_to_be_decayed_value = [self.init_lr * (self.lr_decreasing_factor ** y) for y in
range(len(self.lr_stair_decay_points) + 1)]
self.lr = tf.train.piecewise_constant(self.global_step, self.epoch_lr_to_be_decayed_boundaries,
self.epoch_lr_to_be_decayed_value)
print("lr_type: stair_decay")
elif self.lr_type == "linear_decay":
self.lr = tf.placeholder(tf.float32, name='learning_rate')
print("lr_type: linear_decay")
else:
self.lr = tf.placeholder(tf.float32, name='learning_rate') # no decay
print("lr_type: no decay")
""" Multiple data samples-related parameters """
self.n_total_in_seq = 5 # N_seq: numbers of multiple data samples
self.n_in_seq = 3 # numbers of input consecutive frames (input to network)
self.n_out_groups_sride1 = self.n_total_in_seq - 3 + 1 # 3, numbers of output groups for multiple data samples with temporal stride 1
self.n_ovlp_stride1 = self.n_out_groups_sride1 - 1 # 2, numbers of overlapping (1,1,....,1)
self.n_out_groups_sride2 = self.n_total_in_seq - 5 + 1 # 1, numbers of output groups for multiple data samples with temporal stride 2
self.n_final_ovlp_seq = (self.n_in_seq - 1) * self.n_out_groups_sride1 + 1 # 7, numbers of ground truth (GT) frames (bottom green boxes in Fig. 3)
""" Defining a model """
# define variables for data (input)
self.data_ph = tf.placeholder(tf.float32, shape=(self.batch_size, self.data_sz[1], self.data_sz[2], self.data_sz[3]))
# define variables for label (GT)
self.label_ph = tf.placeholder(tf.float32, shape=(self.batch_size, self.label_sz[1],self.label_sz[2], self.label_sz[3])) # level 3 (org.)
self.label_l2 = tf.image.resize_images(self.label_ph, (self.label_sz[1]//2, self.label_sz[2]//2),method=tf.image.ResizeMethod.BICUBIC) # level 2 (x1/2)
self.label_l1 = tf.image.resize_images(self.label_ph, (self.label_sz[1]//4, self.label_sz[2]//4),method=tf.image.ResizeMethod.BICUBIC) # level 1 (x1/4)
# define variables for flow & warped data
self.flow_ph = tf.placeholder(tf.float32,
shape=(self.batch_size, self.data_sz[1], self.data_sz[2], 16))
self.flow_ss2_ph = tf.placeholder(tf.float32,
shape=(self.batch_size, self.data_sz[1], self.data_sz[2], 8))
self.warp_ph = tf.placeholder(tf.float32,
shape=(self.batch_size, self.data_sz[1], self.data_sz[2], 24))
self.warp_ss2_ph = tf.placeholder(tf.float32,
shape=(self.batch_size, self.data_sz[1], self.data_sz[2], 12))
self.data_ph_5dim = tf_split_seq_dim(self.data_ph) # 5dim, convert to [bs, 5, h/2, w/2, ch] format
self.GT_groups = tf_split_seq_dim(self.label_ph) # 5dim, convert to [bs, 7, h, w, ch] format
self.GT_groups_l2 = tf_split_seq_dim(self.label_l2) # 5dim, convert to [bs, 7, h/2, w/2, ch] format
self.GT_groups_l1 = tf_split_seq_dim(self.label_l1) # 5dim, convert to [bs, 7, h/4, w/4, ch] format
""" Multiple data sample training strategy (a novel input/output framework) for stride1 (by recurrent modeling)"""
for process_i in range(self.n_out_groups_sride1):
""" Tensor_slicer_~: slicing a tensor w.r.t an order(process_i) from the predefined variables along a channel axis (index=3). """
if process_i == 0:
data_only = Tensor_slicer_recurrent(self.data_ph, process_i) # [B, 96, 96, 3*5] => slicing & get a corresponding tensor => [bs, 5, 96, 96, 3*3]: first input (3 subsequent frames)
flow_only = Tensor_slicer_recurrent_flow(self.flow_ph, process_i) # [B, 96, 96, 16] => [N, 8, 96, 96, 8(=4x2)]
warp_only = Tensor_slicer_recurrent_warp(self.warp_ph, process_i) # [B, 96, 96, 24] => [N, 8, 96, 96, 12(=4x3)]
input = tf.concat((data_only, flow_only, warp_only), axis=3)
[self.Pred_groups_l1, self.Pred_groups_l2, self.Pred_groups] = self.model(input
, self.scale_factor, reuse=False, scope='FISRnet') # [bs, h, w, ch*3]
self.Pred_groups = tf_split_seq_dim(self.Pred_groups) # [bs, 3, h, w, ch], not overlapped yet.
self.Pred_groups_l2 = tf_split_seq_dim(self.Pred_groups_l2) # [bs, 3, h, w, ch], not overlapped yet.
self.Pred_groups_l1 = tf_split_seq_dim(self.Pred_groups_l1) # [bs, 3, h, w, ch], not overlapped yet.
else:
data_only = Tensor_slicer_recurrent(self.data_ph, process_i)
flow_only = Tensor_slicer_recurrent_flow(self.flow_ph, process_i)
warp_only = Tensor_slicer_recurrent_warp(self.warp_ph, process_i)
input = tf.concat((data_only, flow_only, warp_only), axis=3)
[Pred_temp_l1, Pred_temp_l2, Pred_temp] = self.model(input
, self.scale_factor, reuse=True, scope='FISRnet')
Pred_temp = tf_split_seq_dim(Pred_temp) # [bs, 3, h, w, ch], not overlapped yet.
Pred_temp_l2 = tf_split_seq_dim(Pred_temp_l2)
Pred_temp_l1 = tf_split_seq_dim(Pred_temp_l1)
self.Pred_groups = tf.concat([self.Pred_groups, Pred_temp],axis=1) # [bs, 3*3, h, w, ch], not overlapped yet.
self.Pred_groups_l2 = tf.concat([self.Pred_groups_l2, Pred_temp_l2],axis=1) # [bs, 3*3, h/2, w/2, ch], not overlapped yet.
self.Pred_groups_l1 = tf.concat([self.Pred_groups_l1, Pred_temp_l1],axis=1) # [bs, 3*3, h/4, w/4, ch], not overlapped yet.
self.Final_Ovlp_Seq = Groups2Ovlp(self.Pred_groups) # [bs, 3*3, h, w, ch] => [bs, n_final_ovlp_seq(=7), h, w, ch]
self.Final_Ovlp_Seq_l2 = Groups2Ovlp(self.Pred_groups_l2) # [bs, n_final_ovlp_seq, h/2, w/2, ch]
self.Final_Ovlp_Seq_l1 = Groups2Ovlp(self.Pred_groups_l1) # [bs, n_final_ovlp_seq, h/4, w/4, ch]
""" Temporal Loss """
""" type1~4 for stride1 """
# type1. Reconstruction Loss for stride1 (Eq.(6))
self.recnLoss = tf.constant(0, dtype=tf.float32)
for process_i in range(self.n_out_groups_sride1):
temp_Pred_3imgs = Tensor_slicer(self.Pred_groups, process_i * 3, self.n_in_seq)
temp_Pred_3imgs_l2 = Tensor_slicer(self.Pred_groups_l2, process_i * 3, self.n_in_seq)
temp_Pred_3imgs_l1 = Tensor_slicer(self.Pred_groups_l1, process_i * 3, self.n_in_seq)
temp_GT_3imgs = Tensor_slicer(self.GT_groups, process_i * 2, self.n_in_seq)
temp_GT_3imgs_l2 = Tensor_slicer(self.GT_groups_l2, process_i * 2, self.n_in_seq)
temp_GT_3imgs_l1 = Tensor_slicer(self.GT_groups_l1, process_i * 2, self.n_in_seq)
L2_loss_l3 = L2_loss(temp_Pred_3imgs, temp_GT_3imgs)
L2_loss_l2 = L2_loss(temp_Pred_3imgs_l2, temp_GT_3imgs_l2)
L2_loss_l1 = L2_loss(temp_Pred_3imgs_l1, temp_GT_3imgs_l1)
self.recnLoss += (L2_loss_l3+
L2_loss_l2*2+
L2_loss_l1*4) # multi-scale loss
# type2. Temporal Matching Loss for stride1 (Eq.(1)) (between overlapped frames)
self.tmLoss = tf.constant(0, dtype=tf.float32)
for process_i in range(self.n_ovlp_stride1):
temp_Front_1img = Tensor_slicer(self.Pred_groups, process_i * 3 + 2, 1)
temp_Back_1img = Tensor_slicer(self.Pred_groups, process_i * 3 + 3, 1)
temp_Front_1img_l2 = Tensor_slicer(self.Pred_groups_l2, process_i * 3 + 2, 1)
temp_Back_1img_l2 = Tensor_slicer(self.Pred_groups_l2, process_i * 3 + 3, 1)
temp_Front_1img_l1 = Tensor_slicer(self.Pred_groups_l1, process_i * 3 + 2, 1)
temp_Back_1img_l1 = Tensor_slicer(self.Pred_groups_l1, process_i * 3 + 3, 1)
self.tmLoss += (L2_loss(temp_Front_1img, temp_Back_1img) + \
L2_loss(temp_Front_1img_l2, temp_Back_1img_l2)*2 + \
L2_loss(temp_Front_1img_l1, temp_Back_1img_l1)*4)
# type3. Temporal Matching Mean Loss for stride1 (Eq.(3))
self.tmmLoss = tf.constant(0, dtype=tf.float32)
for process_i in range(self.n_ovlp_stride1):
temp_Ovlp1_1img = Tensor_slicer(self.Pred_groups, process_i * 3 + 2, 1)
temp_Ovlp2_1img = Tensor_slicer(self.Pred_groups, process_i * 3 + 3, 1)
temp_GT_1img = Tensor_slicer(self.GT_groups, (process_i+1) * 2, 1)
temp_Ovlp1_1img_l2 = Tensor_slicer(self.Pred_groups_l2, process_i * 3 + 2, 1)
temp_Ovlp2_1img_l2 = Tensor_slicer(self.Pred_groups_l2, process_i * 3 + 3, 1)
temp_GT_1img_l2 = Tensor_slicer(self.GT_groups_l2, (process_i + 1) * 2, 1)
temp_Ovlp1_1img_l1 = Tensor_slicer(self.Pred_groups_l1, process_i * 3 + 2, 1)
temp_Ovlp2_1img_l1 = Tensor_slicer(self.Pred_groups_l1, process_i * 3 + 3, 1)
temp_GT_1img_l1 = Tensor_slicer(self.GT_groups_l1, (process_i + 1) * 2, 1)
self.tmmLoss += (L2_loss((temp_Ovlp1_1img + temp_Ovlp2_1img) / 2, temp_GT_1img) +\
L2_loss((temp_Ovlp1_1img_l2 + temp_Ovlp2_1img_l2) / 2, temp_GT_1img_l2)*2 +\
L2_loss((temp_Ovlp1_1img_l1 + temp_Ovlp2_1img_l1) / 2, temp_GT_1img_l1)*4)
# type4. Temporal Difference Loss for stride1 (Eq.(4))
self.tdLoss = tf.constant(0, dtype=tf.float32)
for process_i in range(self.n_final_ovlp_seq - 1):
temp_Pred_front_1img = Tensor_slicer(self.Final_Ovlp_Seq, process_i, 1)
temp_Pred_back_1img = Tensor_slicer(self.Final_Ovlp_Seq, process_i + 1, 1)
temp_Pred_diff_1img = temp_Pred_back_1img - temp_Pred_front_1img
temp_GT_front_1img = Tensor_slicer(self.GT_groups, process_i, 1)
temp_GT_back_1img = Tensor_slicer(self.GT_groups, process_i + 1, 1)
temp_GT_diff_1img = temp_GT_back_1img - temp_GT_front_1img
temp_Pred_front_1img_l2 = Tensor_slicer(self.Final_Ovlp_Seq_l2, process_i, 1)
temp_Pred_back_1img_l2 = Tensor_slicer(self.Final_Ovlp_Seq_l2, process_i + 1, 1)
temp_Pred_diff_1img_l2 = temp_Pred_back_1img_l2 - temp_Pred_front_1img_l2
temp_GT_front_1img_l2 = Tensor_slicer(self.GT_groups_l2, process_i, 1)
temp_GT_back_1img_l2 = Tensor_slicer(self.GT_groups_l2, process_i + 1, 1)
temp_GT_diff_1img_l2 = temp_GT_back_1img_l2 - temp_GT_front_1img_l2
temp_Pred_front_1img_l1 = Tensor_slicer(self.Final_Ovlp_Seq_l1, process_i, 1)
temp_Pred_back_1img_l1 = Tensor_slicer(self.Final_Ovlp_Seq_l1, process_i + 1, 1)
temp_Pred_diff_1img_l1 = temp_Pred_back_1img_l1 - temp_Pred_front_1img_l1
temp_GT_front_1img_l1 = Tensor_slicer(self.GT_groups_l1, process_i, 1)
temp_GT_back_1img_l1 = Tensor_slicer(self.GT_groups_l1, process_i + 1, 1)
temp_GT_diff_1img_l1 = temp_GT_back_1img_l1 - temp_GT_front_1img_l1
self.tdLoss += (L2_loss(temp_Pred_diff_1img, temp_GT_diff_1img) +\
L2_loss(temp_Pred_diff_1img_l2, temp_GT_diff_1img_l2)*2 +\
L2_loss(temp_Pred_diff_1img_l1, temp_GT_diff_1img_l1)*4)
# Total Loss for stride1
self.totalLoss_s1 = self.recn_lambda * self.recnLoss + self.tm1_lambda * self.tmLoss \
+ self.tmm_lambda * self.tmmLoss + self.td_lambda * self.tdLoss
""" type5~7 for stride2 (ss2) """
# input setting for stride2
data_ph_5dim_s2 = [] # temporary input for stride2
for idx in range(3):
data_ph_5dim_s2.append(Tensor_slicer(self.data_ph_5dim, idx * 2, 1)) #
data_ph_5dim_s2 = tf.concat(data_ph_5dim_s2, axis=1) # 5dim, [bs,3*1, h, w, 3] for ss2
self.data_only_ph_5dim_ss2 = tf_merge_seq_dim(data_ph_5dim_s2) # 4dim, [bs, h, w, 3*3] for ss2
self.data_ph_5dim_s2 = tf.concat((self.data_only_ph_5dim_ss2, self.flow_ss2_ph, self.warp_ss2_ph), axis=3) # final input for stride2
# Predictions setting for stride2
self.recnLoss_ss2 = tf.constant(0, dtype=tf.float32)
for process_i in range(self.n_out_groups_sride2):
# in our case, just 1 iteration.
[self.Pred_groups_ss2_l1, self.Pred_groups_ss2_l2, self.Pred_groups_ss2] = self.model(self.data_ph_5dim_s2, self.scale_factor, reuse=True,
scope='FISRnet') # [bs, 3, h, w, ch]
self.Pred_groups_ss2 = tf_split_seq_dim(self.Pred_groups_ss2) # [bs, 3, h, w, ch], not overlapped yet.
self.Pred_groups_ss2_l2 = tf_split_seq_dim(self.Pred_groups_ss2_l2) # [bs, 3, h, w, ch], not overlapped yet.
self.Pred_groups_ss2_l1 = tf_split_seq_dim(self.Pred_groups_ss2_l1) # [bs, 3, h, w, ch], not overlapped yet.
# GT setting for stride2
GT_groups_ss2 = []
for GT_index in range(3):
GT_groups_ss2.append(Tensor_slicer(self.GT_groups, GT_index * 2 + 1, 1))
self.GT_groups_ss2 = tf.concat(GT_groups_ss2, axis=1) # [bs,3*1, h, w, ch] for ss2, 5dim
GT_groups_ss2_l2 = []
for GT_index in range(3):
GT_groups_ss2_l2.append(Tensor_slicer(self.GT_groups_l2, GT_index * 2 + 1, 1))
self.GT_groups_ss2_l2 = tf.concat(GT_groups_ss2_l2, axis=1) # [bs,3*1, h, w, ch] for ss2, 5dim
GT_groups_ss2_l1 = []
for GT_index in range(3):
GT_groups_ss2_l1.append(Tensor_slicer(self.GT_groups_l1, GT_index * 2 + 1, 1))
self.GT_groups_ss2_l1 = tf.concat(GT_groups_ss2_l1, axis=1) # [bs,3*1, h, w, ch] for ss2, 5dim
# type5. Reconstruction Loss for stride2 (Eq.(7))
self.recnLoss_ss2 += (L2_loss(self.Pred_groups_ss2, self.GT_groups_ss2) + \
L2_loss(self.Pred_groups_ss2_l2, self.GT_groups_ss2_l2)*2 + \
L2_loss(self.Pred_groups_ss2_l1, self.GT_groups_ss2_l1)*4)
# type6. Temporal Difference Loss for stride2 (Eq.(5))
self.tdLoss_ss2 = tf.constant(0, dtype=tf.float32)
for process_i in range(3 - 1):
temp_Pred_front_1img_ss2 = Tensor_slicer(self.Pred_groups_ss2, process_i, 1)
temp_Pred_back_1img_ss2 = Tensor_slicer(self.Pred_groups_ss2, process_i + 1, 1)
temp_Pred_diff_1img_ss2 = temp_Pred_back_1img_ss2 - temp_Pred_front_1img_ss2
temp_GT_front_1img_ss2 = Tensor_slicer(self.GT_groups_ss2, process_i, 1)
temp_GT_back_1img_ss2 = Tensor_slicer(self.GT_groups_ss2, process_i + 1, 1)
temp_GT_diff_1img_ss2 = temp_GT_back_1img_ss2 - temp_GT_front_1img_ss2
temp_Pred_front_1img_ss2_l2 = Tensor_slicer(self.Pred_groups_ss2_l2, process_i, 1)
temp_Pred_back_1img_ss2_l2 = Tensor_slicer(self.Pred_groups_ss2_l2, process_i + 1, 1)
temp_Pred_diff_1img_ss2_l2 = temp_Pred_back_1img_ss2_l2 - temp_Pred_front_1img_ss2_l2
temp_GT_front_1img_ss2_l2 = Tensor_slicer(self.GT_groups_ss2_l2, process_i, 1)
temp_GT_back_1img_ss2_l2 = Tensor_slicer(self.GT_groups_ss2_l2, process_i + 1, 1)
temp_GT_diff_1img_ss2_l2 = temp_GT_back_1img_ss2_l2 - temp_GT_front_1img_ss2_l2
temp_Pred_front_1img_ss2_l1 = Tensor_slicer(self.Pred_groups_ss2_l1, process_i, 1)
temp_Pred_back_1img_ss2_l1 = Tensor_slicer(self.Pred_groups_ss2_l1, process_i + 1, 1)
temp_Pred_diff_1img_ss2_l1 = temp_Pred_back_1img_ss2_l1 - temp_Pred_front_1img_ss2_l1
temp_GT_front_1img_ss2_l1 = Tensor_slicer(self.GT_groups_ss2_l1, process_i, 1)
temp_GT_back_1img_ss2_l1 = Tensor_slicer(self.GT_groups_ss2_l1, process_i + 1, 1)
temp_GT_diff_1img_ss2_l1 = temp_GT_back_1img_ss2_l1 - temp_GT_front_1img_ss2_l1
self.tdLoss_ss2 += (L2_loss(temp_Pred_diff_1img_ss2, temp_GT_diff_1img_ss2) + \
L2_loss(temp_Pred_diff_1img_ss2_l2, temp_GT_diff_1img_ss2_l2)*2 +\
L2_loss(temp_Pred_diff_1img_ss2_l1, temp_GT_diff_1img_ss2_l1)*4)
# type7. Temporal Matching Loss for stride2 (Eq.(2))
self.tmLoss_ss2 = tf.constant(0, dtype=tf.float32)
Pred_groups_ss1 = []
for idx in range(3):
Pred_groups_ss1.append(Tensor_slicer(self.Final_Ovlp_Seq, idx * 2 + 1, 1))
self.Pred_groups_ss1 = tf.concat(Pred_groups_ss1, axis=1) # 5dim, [bs,3*1, h, w, ch] for stride2
Pred_groups_ss1_l2 = []
for idx in range(3):
Pred_groups_ss1_l2.append(Tensor_slicer(self.Final_Ovlp_Seq_l2, idx * 2 + 1, 1))
self.Pred_groups_ss1_l2 = tf.concat(Pred_groups_ss1_l2, axis=1) # 5dim, [bs,3*1, h, w, ch] for stride2
Pred_groups_ss1_l1 = []
for idx in range(3):
Pred_groups_ss1_l1.append(Tensor_slicer(self.Final_Ovlp_Seq_l1, idx * 2 + 1, 1))
self.Pred_groups_ss1_l1 = tf.concat(Pred_groups_ss1_l1, axis=1) # 5dim, [bs,3*1, h, w, ch] for stride2
self.tmLoss_ss2 += L2_loss(self.Pred_groups_ss2, self.Pred_groups_ss1) + \
L2_loss(self.Pred_groups_ss2_l2, self.Pred_groups_ss1_l2)*2 + \
L2_loss(self.Pred_groups_ss2_l1, self.Pred_groups_ss1_l1)*4
# Total Loss for stride2
self.totalLoss_ss2 = self.recn_lambda * self.recnLoss_ss2 + self.td_lambda * self.tdLoss_ss2 \
+ self.tm2_lambda * self.tmLoss_ss2
""" Total Loss & PSNR """
self.total_loss = self.totalLoss_s1 + self.ss2_lambda * self.totalLoss_ss2
self.train_PSNR = tf.reduce_mean(
tf.image.psnr(self.Final_Ovlp_Seq, self.GT_groups, max_val=1.0)) # conversion of img range: [0,1]
""" Optimizer """
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.optim = tf.train.AdamOptimizer(self.lr) \
.minimize(self.total_loss, global_step=self.global_step)
"""" Validation (independent implementation for clarity)"""
# define variables for data (val input)
self.val_input_ph = tf.placeholder(tf.float32, shape=(self.val_batch_size, self.data_sz[1], self.data_sz[2], self.data_sz[3]))
# define variables for label (val GT)
self.val_output_ph = tf.placeholder(tf.float32, shape=(self.val_batch_size, self.data_sz[1]*self.scale_factor,
self.data_sz[2]*self.scale_factor, self.label_sz[3]))
self.val_GT_groups = tf_split_seq_dim(self.val_output_ph) # converts to 5dim, [bs, 7, h, w, ch] format
# define variable for flow
self.val_flow_ph = tf.placeholder(tf.float32,
shape=(self.val_batch_size, self.data_sz[1], self.data_sz[2], 16))
self.val_warp_ph = tf.placeholder(tf.float32,
shape=(self.val_batch_size, self.data_sz[1], self.data_sz[2], 24))
""" Recurrent modeling again (reuse FISRnet) for val. """
for process_i in range(self.n_out_groups_sride1):
if process_i == 0:
data_only_val = Tensor_slicer_recurrent(self.val_input_ph, process_i)
flow_only_val = Tensor_slicer_recurrent_flow(self.val_flow_ph, process_i)
warp_only_val = Tensor_slicer_recurrent_warp(self.val_warp_ph, process_i)
input_val = tf.concat((data_only_val, flow_only_val, warp_only_val), axis=3)
[_, _, self.val_Pred_groups] = self.model(input_val
, self.scale_factor, reuse=True,
scope='FISRnet') # [bs, h, w, ch*3]
self.val_Pred_groups = tf_split_seq_dim(self.val_Pred_groups) # [bs, 3, h, w, ch], not overlapped yet.
else:
data_only_val = Tensor_slicer_recurrent(self.val_input_ph, process_i)
flow_only_val = Tensor_slicer_recurrent_flow(self.val_flow_ph, process_i)
warp_only_val = Tensor_slicer_recurrent_warp(self.val_warp_ph, process_i)
input_val = tf.concat((data_only_val, flow_only_val, warp_only_val), axis=3)
[_, _, Pred_temp] = self.model(input_val
, self.scale_factor, reuse=True, scope='FISRnet')
Pred_temp = tf_split_seq_dim(Pred_temp) # [bs, 3, h, w, ch], not overlapped yet.
self.val_Pred_groups = tf.concat([self.val_Pred_groups, Pred_temp],
axis=1) # [bs, 3*3, h, w, ch], not overlapped yet.
self.val_Final_Ovlp_Seq = Groups2Ovlp(self.val_Pred_groups) # [bs, n_final_ovlp_seq, h, w, ch]
# Simply check recnLoss and PSNR for tendency.
self.val_recnLoss = L2_loss(self.val_Final_Ovlp_Seq, self.val_GT_groups)
self.val_PSNR = tf.reduce_mean(
tf.image.psnr(self.val_Final_Ovlp_Seq, self.val_GT_groups, max_val=1.0)) # conversion of img range: [0,1]
"""" Summary for tensorboard """
# summaries for train (not multiplied by weight parameter lambda, itself)
self.recnLoss_sum = tf.summary.scalar("Reconstruction Loss for stride1 (Eq.(6))", self.recnLoss)
self.tmLoss_sum = tf.summary.scalar("Temporal Matching Loss for stride1 (Eq.(1))", self.tmLoss)
self.tmmLoss_sum = tf.summary.scalar("Temporal Matching Mean Loss (Eq.(3))", self.tmmLoss)
self.tdLoss_sum = tf.summary.scalar("Temporal Difference Loss for stride1 (Eq.(4))", self.tdLoss)
self.totalLoss_s1_sum = tf.summary.scalar("Total Loss for stride1", self.totalLoss_s1)
self.recnLoss_ss2_sum = tf.summary.scalar("Reconstruction Loss for stride2 (Eq.(7))", self.recnLoss_ss2)
self.tdLoss_ss2_sum = tf.summary.scalar("Temporal Difference Loss for stride2 (Eq.(5))", self.tdLoss_ss2)
self.tmLoss_ss2_sum = tf.summary.scalar("Temporal Matching Loss for stride2 (Eq.(2))", self.tmLoss_ss2)
self.totalLoss_ss2_sum = tf.summary.scalar("Total Loss for stride2", self.totalLoss_ss2)
self.total_loss_sum = tf.summary.scalar("Total Loss", self.total_loss)
self.train_PSNR_sum = tf.summary.scalar("train_PSNR", self.train_PSNR)
# summaries for val
self.val_recnLoss_sum = tf.summary.scalar("val_recnLoss", self.val_recnLoss)
self.val_PSNR_sum = tf.summary.scalar("val_PSNR", self.val_PSNR)
# summaries for images (train)
images_sum = []
for s in range(self.n_final_ovlp_seq):
"""" showed in YUV color space. """
images_sum.append(tf.summary.image('Seq%d_Pred' % s,
tf.image.convert_image_dtype(
tf.clip_by_value(
self.Final_Ovlp_Seq[0:(self.n_train_img_showed + 1), s, :, :, :],
0, 1), dtype=tf.uint8)))
images_sum.append(tf.summary.image('Seq%d_GT' % s, tf.image.convert_image_dtype(
self.GT_groups[0:(self.n_train_img_showed + 1), s, :, :, :], dtype=tf.uint8)))
# merging summaries
self.train_ss1_summary_loss = tf.summary.merge([self.recnLoss_sum, self.tmLoss_sum,
self.tmmLoss_sum, self.tdLoss_sum,self.totalLoss_s1_sum])
self.train_ss2_summary_loss = tf.summary.merge([self.recnLoss_ss2_sum, self.tdLoss_ss2_sum,
self.tmLoss_ss2_sum, self.totalLoss_ss2_sum])
self.total_train_summary_loss = tf.summary.merge([self.total_loss_sum,
self.train_PSNR_sum])
self.images_summary = tf.summary.merge(images_sum)
self.Final_train_summary = tf.summary.merge(
[self.train_ss1_summary_loss, self.train_ss2_summary_loss, self.total_train_summary_loss])
self.Final_val_summary = tf.summary.merge([self.val_recnLoss_sum, self.val_PSNR_sum])
def train(self):
# initialize all variables
tf.global_variables_initializer().run()
# saver to save model
self.saver = tf.train.Saver(max_to_keep=1)
# summary writer (tensorboard)
summary_dir = os.path.join(self.log_dir, self.model_dir)
check_folder(summary_dir)
self.writer = tf.summary.FileWriter(summary_dir, self.sess.graph)
counter = 1
# restore check-point if it exits
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
start_epoch = (int)(checkpoint_counter / (self.train_iter))
start_batch_id = checkpoint_counter - start_epoch * (self.train_iter)
counter = checkpoint_counter
print(" [*] Load SUCCESS")
else:
start_epoch = 0
start_batch_id = 0
counter = 1
print(" [!] Load failed...")
# loop for epoch
start_time = time.time()
lr = self.lr # lr_type == 'stair_decay', 'no_decay' 인 경우에는 그대로 lr이 쓰임
for epoch in range(start_epoch, self.epoch):
""" define lists for display """
train_PSNR_list_for_epoch = []
recnLoss_list_for_epoch = []
tmLoss_list_for_epoch = []
tmmLoss_list_for_epoch = []
tdLoss_list_for_epoch = []
totalLoss_s1_list_for_epoch = []
recnLoss_ss2_list_for_epoch = []
tdLoss_ss2_list_for_epoch = []
tmLoss_ss2_list_for_epoch = []
totalLoss_ss2_list_for_epoch = []
total_loss_list_for_epoch = []
# shuffle indices(order) of whole training data per each epoch
rand_idx = np.random.permutation(self.data_sz[0] - self.val_data_size)
for idx in range(self.train_iter):
data_batch = self.data[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
label_batch = self.label[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
flow_batch = self.flow[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
flow_batch_ss2 = self.flow_ss2[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
warp_batch = self.warp[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
warp_batch_ss2 = self.warp_ss2[rand_idx[self.batch_size * idx:self.batch_size * (idx + 1)], :, :, :]
if self.lr_type == "linear_decay":
lr = self.init_lr if epoch < self.lr_linear_decay_point else self.init_lr * (self.epoch - epoch) / (
self.epoch - self.lr_linear_decay_point) # linear decay
feed_dict = {self.lr: lr, self.data_ph: data_batch, self.label_ph: label_batch,
self.flow_ph: flow_batch, self.flow_ss2_ph: flow_batch_ss2, self.warp_ph: warp_batch, self.warp_ss2_ph: warp_batch_ss2}
else:
# self.lr_type == "stair_decay" or "no_decay"
feed_dict = {self.data_ph: data_batch, self.label_ph: label_batch,
self.flow_ph: flow_batch, self.flow_ss2_ph: flow_batch_ss2, self.warp_ph: warp_batch, self.warp_ss2_ph: warp_batch_ss2}
# run the session by feeding (one iteration for train)
_, Final_summary_str, images_summary_str, \
recnLoss, tmLoss, \
tmmLoss, tdLoss, totalLoss_s1, \
recnLoss_ss2, tdLoss_ss2, \
tmLoss_ss2, totalLoss_ss2, total_loss, train_PSNR, lr_per_epoch = self.sess.run(
[self.optim, self.Final_train_summary, self.images_summary, self.recnLoss,
self.tmLoss, self.tmmLoss,
self.tdLoss, self.totalLoss_s1, self.recnLoss_ss2,
self.tdLoss_ss2, self.tmLoss_ss2,
self.totalLoss_ss2, self.total_loss, self.train_PSNR, self.lr],
feed_dict=feed_dict)
self.writer.add_summary(Final_summary_str, counter)
# display the training status
if np.mod(idx, self.freq_display) == 0:
self.writer.add_summary(images_summary_str,counter)
print(
"Epoch: [%3d], [%4d/%4d]-th batch, time: %4.2f(min.), "
"train_PSNR: %.3f, recnLoss: %.6f, tmLoss: %.6f, tmmLoss: %.6f, tdLoss: %.6f, "
"totalLoss_s1: %.6f,recnLoss_ss2: %.6f,"
"tdLoss_ss2: %.6f, tmLoss_ss2: %.6f, totalLoss_ss2: %.6f, total_loss: %.6f" \
% (epoch, idx, self.train_iter, (time.time() - start_time) / 60,
train_PSNR, recnLoss, tmLoss, tmmLoss, tdLoss,
totalLoss_s1, recnLoss_ss2,
tdLoss_ss2, tmLoss_ss2,totalLoss_ss2, total_loss))
counter += 1
train_PSNR_list_for_epoch.append(train_PSNR)
recnLoss_list_for_epoch.append(recnLoss)
tmLoss_list_for_epoch.append(tmLoss)
tmmLoss_list_for_epoch.append(tmmLoss)
tdLoss_list_for_epoch.append(tdLoss)
totalLoss_s1_list_for_epoch.append(totalLoss_s1)
recnLoss_ss2_list_for_epoch.append(recnLoss_ss2)
tdLoss_ss2_list_for_epoch.append(tdLoss_ss2)
tmLoss_ss2_list_for_epoch.append(tmLoss_ss2)
totalLoss_ss2_list_for_epoch.append(totalLoss_ss2)
total_loss_list_for_epoch.append(total_loss)
train_PSNR_per_epoch = np.mean(train_PSNR_list_for_epoch)
recnLoss_per_epoch = np.mean(recnLoss_list_for_epoch)
tmLoss_per_epoch = np.mean(tmLoss_list_for_epoch)
tmmLoss_per_epoch = np.mean(tmmLoss_list_for_epoch)
tdLoss_per_epoch = np.mean(tdLoss_list_for_epoch)
totalLoss_s1_per_epoch = np.mean(totalLoss_s1_list_for_epoch)
recnLoss_ss2_per_epoch = np.mean(recnLoss_ss2_list_for_epoch)
tdLoss_ss2_per_epoch = np.mean(tdLoss_ss2_list_for_epoch)
tmLoss_ss2_per_epoch = np.mean(tmLoss_ss2_list_for_epoch)
totalLoss_ss2_per_epoch = np.mean(totalLoss_ss2_list_for_epoch)
total_loss_per_epoch = np.mean(total_loss_list_for_epoch)
# display the training status (average) per epoch
print(
"# (average) Epoch: [%4d], LR: %1.10f, time: %4.2f(minutes), "
"train_PSNR: %.3f, recnLoss: %.6f, tmLoss: %.6f, tmmLoss: %.6f, tdLoss: %.6f, "
"totalLoss_s1: %.6f,recnLoss_ss2: %.6f,"
"tdLoss_ss2: %.6f, tmLoss_ss2: %.6f, totalLoss_ss2: %.6f, total_loss: %.6f" \
% (epoch, lr_per_epoch, (time.time() - start_time) / 60,
train_PSNR_per_epoch, recnLoss_per_epoch, tmLoss_per_epoch, tmmLoss_per_epoch, tdLoss_per_epoch,
totalLoss_s1_per_epoch, recnLoss_ss2_per_epoch, tdLoss_ss2_per_epoch, tmLoss_ss2_per_epoch,
totalLoss_ss2_per_epoch, total_loss_per_epoch
))
""" For validation """
val_Loss_recn_list_for_epoch = []
val_Loss_PSNR_list_for_epoch = []
for val_idx in range(self.val_iter):
data_batch_val = self.data_val[self.val_batch_size * val_idx:self.val_batch_size * (val_idx + 1), :, :, :]
label_batch_val = self.label_val[self.val_batch_size * val_idx:self.val_batch_size * (val_idx + 1), :, :, :]
flow_batch_val = self.flow_val[self.val_batch_size * val_idx:self.val_batch_size * (val_idx + 1), :, :, :]
warp_batch_val = self.warp_val[self.val_batch_size * val_idx:self.val_batch_size * (val_idx + 1), :, :, :]
val_recnLoss, val_PSNR, Final_val_summary = self.sess.run(
[self.val_recnLoss, self.val_PSNR, self.Final_val_summary],
feed_dict={self.val_input_ph: data_batch_val, self.val_output_ph: label_batch_val,
self.val_flow_ph: flow_batch_val, self.val_warp_ph: warp_batch_val})
val_Loss_recn_list_for_epoch.append(val_recnLoss)
val_Loss_PSNR_list_for_epoch.append(val_PSNR)
self.writer.add_summary(Final_val_summary, counter)
val_recnLoss_per_epoch = np.mean(val_Loss_recn_list_for_epoch)
val_PSNR_per_epoch = np.mean(val_Loss_PSNR_list_for_epoch)
print(
"######### Validation (average),Epoch: [%4d/%4d]-th epoch, time: %4.2f(min.), val_PSNR: %.3f[dB], "
"recnLoss: %.6f #########" \
% (epoch, self.epoch, (time.time() - start_time) / 60,
val_PSNR_per_epoch,
val_recnLoss_per_epoch))
""" Save model """
self.save_checkpoint(self.checkpoint_dir, self.global_step.eval())
def test(self):
input = tf.placeholder(tf.float32,
shape=(8, 192, 192, 29))
_,_,_ = self.model(input
, self.scale_factor, reuse=False, scope='FISRnet')
vl = [v for v in tf.global_variables() if
"FISRnet" in v.name]
self.saver = tf.train.Saver(var_list=vl)
"""" Measure the performance in YUV color space. """
# saver to save model
tf.global_variables_initializer().run() # before "restore"
# restore the checkpoint
_, _ = self.load(self.checkpoint_dir)
test_data_path = sorted(glob.glob(os.path.join(self.test_data_path, '*.png')))
test_label_path = sorted(glob.glob(os.path.join(self.test_label_path, '*.png')))
print(" Start to read flow data (test).")
flow_path = self.test_flow_data_path
H, W = self.test_input_size
flow = read_flo_file_5dim(flow_path)
print(" Successfully load.")
flow = merge_seq_dim(flow)
print(" Start to read warped data (test).")
warp_path = self.test_warped_data_path
warp = read_mat_file_warp(warp_path, 'pred') # 2K input
print(" Successfully load.")
warp = merge_seq_dim(warp)
num_patch = self.test_patch # due to memory capacity, we divide the whole image into small patches.
patch_boundary = 32 # multiple of 32
test_FISR_Loss_PSNR_list_for_epoch = []
test_SR_Loss_PSNR_list_for_epoch = []
test_FISR_Loss_SSIM_list_for_epoch = []
test_SR_Loss_SSIM_list_for_epoch = []
inf_time = []
start_time = time.time()
""" make "test_img_dir" per experiment """
test_img_dir = os.path.join(self.test_img_dir, self.model_dir)
check_folder(test_img_dir)
n_in_seq = 3
n_GT_seq = n_in_seq * 2 - 3 # 3
n_test_in_seq = 5
n_test_label_seq = 2 * n_test_in_seq - 3 # 7
for scene_i in range(int(len(test_data_path) / n_test_in_seq)):
for sample_i in range(n_test_in_seq - n_in_seq + 1):
test_PSNR = []
test_SSIM = []
###======== Read & Compose Data ========###
for seq_i in range(n_in_seq):
# read "n_in_seq" subsequent frames
img_temp = np.array(Image.open(test_data_path[scene_i * n_test_in_seq + sample_i + seq_i]))
if seq_i == 0:
img = img_temp
else:
img = np.concatenate((img, img_temp), axis=2)
for seq_i in range(n_GT_seq):
label_temp = np.array(
Image.open(test_label_path[scene_i * n_test_label_seq + sample_i * 2 + seq_i]))
if seq_i == 0:
label = label_temp
else:
label = np.concatenate((label, label_temp), axis=2)
###======== Crop Data for 32 multiple ========###
# crop img for u-net (32x32)
h, w = self.test_input_size
c = n_in_seq*3
h = h - np.remainder(h, 32*num_patch[0])
w = w - np.remainder(w, 32*num_patch[1])
img = img[:h, :w, :] # now, it is divided by 32 with no remainder.
label = label[:h * self.scale_factor, :w * self.scale_factor, :]
###======== Normalize & Clip Image ========###
img = np.array(img, dtype=np.double) / 255.
label = np.array(label, dtype=np.double) / 255.
img = np.expand_dims(np.clip(img, 0, 1), axis=0)
label = np.expand_dims(np.clip(label, 0, 1), axis=0)
###======== Normalize & Clip Flow ========###
flow_sample = flow[scene_i, :h, :w, 4*sample_i:4*sample_i+8]
flow_sample = flow_sample/96/2
flow_sample = np.expand_dims(np.clip(flow_sample, -1, 1), axis=0)
###======== Normalize & Clip Warp Image ========###
warp_sample = warp[scene_i, :h, :w, 6*sample_i:6*sample_i+12]
warp_sample = np.expand_dims(np.clip(warp_sample, 0, 1), axis=0)
###======== Generate Input ========###
input = np.concatenate([img, flow_sample, warp_sample], axis=3)
test_Pred_full = np.zeros((h*self.scale_factor, w*self.scale_factor, c))
###======== Divide & Process due to Limited Memory ========###
for p in range(num_patch[0]*num_patch[1]):
pH = p // num_patch[1] # patch index (priority: w=>h)
pW = p % num_patch[1] # patch index
sH = h // num_patch[0] # patch size
sW = w // num_patch[1] # patch size
# process data considering patch boundary
H_low_ind, H_high_ind, W_low_ind, W_high_ind, add_H, add_W = \
get_HW_boundary(patch_boundary, h, w, pH, sH, pW, sW)
###======== Set Model ========###
data_test_ph = tf.placeholder(tf.float32,
shape=(1, sH + add_H, sW + add_W, c + 8 + 12))
label_test_ph = tf.placeholder(tf.float32,
shape=(1, sH * self.scale_factor, sW * self.scale_factor, c * 2 - 9))
[_, _, test_Pred] = self.model(data_test_ph, self.scale_factor, reuse=True, scope='FISRnet')
###======== Pre-process Data ========###
simg = input[:, H_low_ind:H_high_ind, W_low_ind:W_high_ind, :]
slabel = label[:, pH * sH * self.scale_factor: (pH + 1) * sH * self.scale_factor,
pW * sW * self.scale_factor: (pW + 1) * sW * self.scale_factor, :]
###======== Run Session ========###
rs_time = time.time()
test_Pred_patch = self.sess.run(
test_Pred, feed_dict={data_test_ph: simg, label_test_ph: slabel})
inf_time.append(time.time() - rs_time)
# trim patch boundary
test_Pred_trim = trim_patch_boundary(test_Pred_patch, patch_boundary, h, w, pH, sH, pW,
sW, self.scale_factor)
# store in pred_full
test_Pred_full[pH * sH * self.scale_factor: (pH + 1) * sH * self.scale_factor,
pW * sW * self.scale_factor: (pW + 1) * sW * self.scale_factor, :] = np.squeeze(test_Pred_trim)
###======== Process Prediction & GT ========###
test_pred = np.clip(test_Pred_full, 0, 1)
test_GT = np.squeeze(label)
###======== Compute PSNR & Print Results========###
for seq_i in range(n_GT_seq):
test_PSNR.append(utils._compute_psnr(test_pred[:, :, 3 * seq_i:3 * (seq_i + 1)],
test_GT[:, :, 3 * seq_i:3 * (seq_i + 1)], 1.))
test_SSIM.append(compare_ssim(Image.fromarray((test_pred[:, :, 3 * seq_i:3 * (seq_i + 1)] * 255).astype('uint8')),
Image.fromarray((test_GT[:, :, 3 * seq_i:3 * (seq_i + 1)] * 255).astype('uint8'))))
print(
" <Test> [%4d/%4d]-th image, scene: %2d-%d, time: %4.4f(minutes), test_PSNR: fr1 (FI-SR) %.8f[dB], fr2 (SR) %.8f[dB], fr3 (FI-SR) %.8f[dB] " \
% (scene_i * (n_test_in_seq - n_in_seq + 1) + sample_i,
len(test_data_path) / n_test_in_seq * (n_test_in_seq - n_in_seq + 1),
scene_i, sample_i, (time.time() - start_time) / 60, test_PSNR[0], test_PSNR[1], test_PSNR[2]))
print(
" --------------------------------------------------------------- test_SSIM: fr1 (FI-SR) %.8f, fr2 (SR) %.8f, fr3 (FI-SR) %.8f " \
% (test_SSIM[0], test_SSIM[1], test_SSIM[2]))
###======== Save Predictions as RGB Images (YUV->RGB) ========###
# by considering the overlapping, the frame from the later sliding window is taken for simplicity ("if sample_i == 2:")
pred = np.uint8(test_pred * 255) # YUV, range of [0,255]
# check
for seq_i in range(n_GT_seq):
fr_name = os.path.basename(test_label_path[scene_i * n_test_label_seq + sample_i * 2 + seq_i])
fr_name = fr_name[3:]
rgb_img = utils.YUV2RGB_matlab(pred[:, :, seq_i * 3:(seq_i + 1) * 3])
pred_img = Image.fromarray(rgb_img.astype('uint8'))
pred_img.save(os.path.join(test_img_dir, 'pred_{}'.format(fr_name)))
###======== Append Loss & PSNR ========###
test_FISR_Loss_PSNR_list_for_epoch.append(test_PSNR[0])
test_SR_Loss_PSNR_list_for_epoch.append(test_PSNR[1])
test_FISR_Loss_SSIM_list_for_epoch.append(test_SSIM[0])
test_SR_Loss_SSIM_list_for_epoch.append(test_SSIM[1])
if sample_i == 2:
test_FISR_Loss_PSNR_list_for_epoch.append(test_PSNR[2])
test_FISR_Loss_SSIM_list_for_epoch.append(test_SSIM[2])
###======== Compute Mean PSNR & SSIM for Whole Scenes ========###
test_FISR_PSNR_per_epoch = np.mean(test_FISR_Loss_PSNR_list_for_epoch)
test_SR_PSNR_per_epoch = np.mean(test_SR_Loss_PSNR_list_for_epoch)
test_FISR_SSIM_per_epoch = np.mean(test_FISR_Loss_SSIM_list_for_epoch)
test_SR_SSIM_per_epoch = np.mean(test_SR_Loss_SSIM_list_for_epoch)
print(
"######### Test (average) test_PSNR: FISR %.8f[dB], SR %.8f[dB] #########" \
% (test_FISR_PSNR_per_epoch, test_SR_PSNR_per_epoch))
print(
"######### Test (average) test_SSIM: FISR %.8f, SR %.8f #########" \
% (test_FISR_SSIM_per_epoch, test_SR_SSIM_per_epoch))
print("######### Estimated Inference Time (per one output 4K frame): %.8f[s] #########" % (
np.mean(inf_time) * self.test_patch[0] * self.test_patch[1]))
def FISR_for_video(self, flow_file_name, warp_file_name):
input = tf.placeholder(tf.float32,
shape=(8, 192, 192, 29))
_, _, _ = self.model(input
, self.scale_factor, reuse=False, scope='FISRnet')
vl = [v for v in tf.global_variables() if
"FISRnet" in v.name]
self.saver = tf.train.Saver(var_list=vl)
"""" Make joint spatial-temporal upscaling (FISR) frames for input frames in one folder """
# saver to save model
tf.global_variables_initializer().run() # before "restore"
# restore the checkpoint
_, _ = self.load(self.checkpoint_dir)
test_data_path = glob.glob(os.path.join(self.frame_folder_path, '*.png')) # YUV
num_fr = self.frame_num
""" Make (ex))"E:/FISR_Github/FISR_test_folder/scene1/FISR_frames" to save frames """
FISR_img_dir = os.path.join(self.frame_folder_path,
'FISR_frames')
check_folder(FISR_img_dir)
print(" Start to read flow data (FISR test).")
flow_path = flow_file_name
flow = read_flo_file_5dim(flow_path) # [N, 8, h, w, 2], here: [N, 2, h, w, 2]
print(" Successfully load.")
flow = np.concatenate((flow[0:num_fr - 2, :, :, :, :], flow[1:num_fr - 1, :, :, :, :]),
axis=1) # [N-1, 2+2(bidirectional), h, w, 2],
flow = merge_seq_dim(flow)
print(" Start to read warped data (FISR test).")
warp_path = warp_file_name
warp = read_mat_file_warp(warp_path, 'pred') # [N, 2, h, w, 3]
warp = np.concatenate((warp[0:num_fr - 2, :, :, :, :], warp[1:num_fr - 1, :, :, :, :]),
axis=1) # [N-1, 2+2(bidirectional), h, w, 3]
print(" Successfully load.")
warp = merge_seq_dim(warp)
num_patch = self.FISR_test_patch # due to memory capacity, we divide the whole image into small patches.
patch_boundary = 32 # multiple of 32
inf_time = []
start_time = time.time()
""" make "test_img_dir" per experiment """
test_img_dir = os.path.join(self.test_img_dir, self.model_dir)
check_folder(test_img_dir)
n_in_seq = 3
n_test_in_seq = 5
H, W = self.FISR_input_size
for fr in range(num_fr - 2):
###======== Read & Compose Data ========###
for seq_i in range(n_in_seq):
img_temp = np.array(Image.open(test_data_path[fr + seq_i]))
if seq_i == 0:
img = img_temp
else: