-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKalman_c.cpp
141 lines (135 loc) · 5.02 KB
/
Kalman_c.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
//
// FFT3DFilter plugin for Avisynth 2.5 - 3D Frequency Domain filter
// pure C++ filtering functions
//
// Copyright(C)2004-2006 A.G.Balakhnin aka Fizick, bag@hotmail.ru, http://avisynth.org.ru
// Copyright(C) 2018 Daniel Klíma aka Klimax
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as published by
// the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//-----------------------------------------------------------------------------------------
#include "windows.h"
#include "fftwlite.h"
#include "Kalman.h"
// since v1.7 we use outpitch instead of outwidth
//
//-----------------------------------------------------------------------------------------
//
void KalmanFilter::ApplyKalmanPattern_C() noexcept
{
// return result in outLast
int w(0);
fftwf_complex *__restrict covar = covar_in, *__restrict covarProcess = covarProcess_in;
for (int block = start_block; block < blocks; block++)
{
for (int h = 0; h < bh; h++) //
{
for (w = 0; w < outwidth; w++)
{
// use one of possible method for motion detection:
if ((outcur[w][0] - outLast[w][0])*(outcur[w][0] - outLast[w][0]) > covarNoiseNormed2[w] * kratio2 ||
(outcur[w][1] - outLast[w][1])*(outcur[w][1] - outLast[w][1]) > covarNoiseNormed2[w] * kratio2)
{
// big pixel variation due to motion etc
// reset filter
covar[w][0] = covarNoiseNormed2[w];
covar[w][1] = covarNoiseNormed2[w];
covarProcess[w][0] = covarNoiseNormed2[w];
covarProcess[w][1] = covarNoiseNormed2[w];
outLast[w][0] = outcur[w][0];
outLast[w][1] = outcur[w][1];
//return result in outLast
}
else
{ // small variation
// useful sum
float sumre = (covar[w][0] + covarProcess[w][0]);
float sumim = (covar[w][1] + covarProcess[w][1]);
// real gain, imagine gain
float GainRe = sumre / (sumre + covarNoiseNormed2[w]);
float GainIm = sumim / (sumim + covarNoiseNormed2[w]);
// update process
covarProcess[w][0] = (GainRe*GainRe*covarNoiseNormed2[w]);
covarProcess[w][1] = (GainIm*GainIm*covarNoiseNormed2[w]);
// update variation
covar[w][0] = (1 - GainRe)*sumre;
covar[w][1] = (1 - GainIm)*sumim;
outLast[w][0] = (GainRe*outcur[w][0] + (1 - GainRe)*outLast[w][0]);
outLast[w][1] = (GainIm*outcur[w][1] + (1 - GainIm)*outLast[w][1]);
//return filtered result in outLast
}
}
outcur += outpitch;
outLast += outpitch;
covar += outpitch;
covarProcess += outpitch;
covarNoiseNormed2 += outpitch;
}
covarNoiseNormed2 -= outpitch * bh;
}
}
//-----------------------------------------------------------------------------------------
//
void KalmanFilter::ApplyKalman_C() noexcept
{
// return result in outLast
int w(0);
fftwf_complex *__restrict covar = covar_in, *__restrict covarProcess = covarProcess_in;
const float sigmaSquaredMotionNormed = covarNoiseNormed * kratio2;
for (int block = start_block; block < blocks; block++)
{
for (int h = 0; h < bh; h++) //
{
for (w = 0; w < outwidth; w++)
{
// use one of possible method for motion detection:
if ((outcur[w][0] - outLast[w][0])*(outcur[w][0] - outLast[w][0]) > sigmaSquaredMotionNormed ||
(outcur[w][1] - outLast[w][1])*(outcur[w][1] - outLast[w][1]) > sigmaSquaredMotionNormed)
{
// big pixel variation due to motion etc
// reset filter
covar[w][0] = covarNoiseNormed;
covar[w][1] = covarNoiseNormed;
covarProcess[w][0] = covarNoiseNormed;
covarProcess[w][1] = covarNoiseNormed;
outLast[w][0] = outcur[w][0];
outLast[w][1] = outcur[w][1];
//return result in outLast
}
else
{ // small variation
// useful sum
float sumre = (covar[w][0] + covarProcess[w][0]);
float sumim = (covar[w][1] + covarProcess[w][1]);
// real gain, imagine gain
float GainRe = sumre / (sumre + covarNoiseNormed);
float GainIm = sumim / (sumim + covarNoiseNormed);
// update process
covarProcess[w][0] = (GainRe*GainRe*covarNoiseNormed);
covarProcess[w][1] = (GainIm*GainIm*covarNoiseNormed);
// update variation
covar[w][0] = (1 - GainRe)*sumre;
covar[w][1] = (1 - GainIm)*sumim;
outLast[w][0] = (GainRe*outcur[w][0] + (1 - GainRe)*outLast[w][0]);
outLast[w][1] = (GainIm*outcur[w][1] + (1 - GainIm)*outLast[w][1]);
//return filtered result in outLast
}
}
outcur += outpitch;
outLast += outpitch;
covar += outpitch;
covarProcess += outpitch;
}
}
}