-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
109 lines (91 loc) · 4.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch.optim as optim
from lib.core.trainer import Trainer
from lib.core.loss import HANetLoss
from lib.core.config import parse_args
from lib.models.HANet import HANet
from lib.utils.utils import create_logger, prepare_output_dir, worker_init_fn
from lib.dataset import find_dataset_using_name
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.backends.cudnn as cudnn
import numpy as np
import random
import pprint
import torch
import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'
def main(cfg):
if cfg.SEED_VALUE >= 0:
print(f'Seed value for the experiment is {cfg.SEED_VALUE}')
os.environ['PYTHONHASHSEED'] = str(cfg.SEED_VALUE)
random.seed(cfg.SEED_VALUE)
torch.manual_seed(cfg.SEED_VALUE)
np.random.seed(cfg.SEED_VALUE)
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join((map(str, cfg.GPUS)))
logger = create_logger(cfg.LOGDIR, phase='train')
logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')
logger.info(pprint.pformat(cfg))
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
writer = SummaryWriter(log_dir=cfg.LOGDIR)
writer.add_text('config', pprint.pformat(cfg), 0)
# ========= Dataloaders ========= #
dataset_class = find_dataset_using_name(cfg.DATASET_NAME)
train_dataset = dataset_class(cfg,
estimator=cfg.ESTIMATOR,
return_type=cfg.BODY_REPRESENTATION,
phase='train')
test_dataset = dataset_class(cfg,
estimator=cfg.ESTIMATOR,
return_type=cfg.BODY_REPRESENTATION,
phase='test')
train_loader = DataLoader(dataset=train_dataset,
batch_size=cfg.TRAIN.BATCH_SIZE,
shuffle=True,
num_workers=cfg.TRAIN.WORKERS_NUM,
pin_memory=True,
worker_init_fn=worker_init_fn)
test_loader = DataLoader(dataset=test_dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.TRAIN.WORKERS_NUM,
pin_memory=True,
worker_init_fn=worker_init_fn)
# # ========= Compile Loss ========= #
loss = HANetLoss(w_decoder=cfg.LOSS.W_DECODER,
lamada=cfg.LOSS.LAMADA,
smpl_model_dir=cfg.SMPL_MODEL_DIR,
smpl=(cfg.BODY_REPRESENTATION == "smpl"))
# # ========= Initialize networks ========= #
print(f'Slide window: {cfg.MODEL.SLIDE_WINDOW_SIZE}')
print(f'Sample interval: {cfg.SAMPLE_INTERVAL}')
model = HANet(cfg, test_dataset.input_dimension,
slide_window=cfg.MODEL.SLIDE_WINDOW_SIZE,
sample_interval=cfg.SAMPLE_INTERVAL,
encoder_hidden_dim=cfg.MODEL.ENCODER_EMBEDDING_DIMENSION,
decoder_hidden_dim=cfg.MODEL.DECODER_EMBEDDING_DIMENSION,
dropout=cfg.MODEL.DROPOUT,
nheads=cfg.MODEL.ENCODER_HEAD,
dim_feedforward=cfg.MODEL.ENCODER_EMBEDDING_DIMENSION*4,
enc_layers=cfg.MODEL.ENCODER_TRANSFORMER_BLOCK,
dec_layers=cfg.MODEL.ENCODER_TRANSFORMER_BLOCK,
activation="leaky_relu",
pre_norm=cfg.TRAIN.PRE_NORM,
hierarchical_encoder_interp_method='linear',
hierarchical_encoder_mode='transformer').to(cfg.DEVICE)
optimizer = optim.AdamW(model.parameters(), lr=cfg.TRAIN.LR, amsgrad=True)
# ========= Start Training ========= #
Trainer(train_dataloader=train_loader,
test_dataloader=test_loader,
model=model,
loss=loss,
writer=writer,
optimizer=optimizer,
cfg=cfg).run()
if __name__ == '__main__':
cfg, cfg_file = parse_args()
cfg = prepare_output_dir(cfg, cfg_file)
main(cfg)