-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaya.library.R
264 lines (205 loc) · 8.53 KB
/
aya.library.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
rm(list=ls())
gc()
ReQ_packages = c("dplyr", "tidyr", "magrittr", "data.table", "ggpubr", "prismatic", "ggplot2",
"RColorBrewer", "pheatmap", "VennDiagram")
for (pack in ReQ_packages) {
if(pack %in% rownames(installed.packages()) == FALSE) {
BiocManager::install(pack)
install.packages(pack)
suppressPackageStartupMessages(library(pack, character.only = TRUE))
} else {
suppressPackageStartupMessages(library(pack, character.only = TRUE))
}
}
## Auxiliary ##
aya_palette <- c("#E38A42FF", "#42B3E3FF",
"#E35DBFFF", "#97C75DFF",
"#C75D84FF", "#E6D250FF",
"#B84818FF", "#A477C9FF",
"#5D9483FF", "#DBD086FF",
"#86B2DBFF", "#BFEB9DFF")
## Functions ##
# Show aya color palette and perform colorblind test
aya_colors <- function() {
print("Arriba y abajo color palette:")
print(color(aya_palette))
print("Colorblind checks:")
print(color(dichromat::dichromat(aya_palette, "protan")))
print(color(dichromat::dichromat(aya_palette, "deutan")))
print(color(dichromat::dichromat(aya_palette, "tritan")))
}
# Read Arriba output files
read_fusions <- function(working_dir, pattern = "_fusions.tsv$") {
fusion_files <- list.files(working_dir, pattern = pattern,
recursive = TRUE, full.names = TRUE)
cat("Fusion files found:\n")
print(fusion_files)
for (i in 1:length(fusion_files)) {
# Read Arriba results
path2data <- fusion_files[i]
name <- gsub(".*/|_fusions.tsv","", path2data, perl=TRUE)
data <- fread(as.character(path2data), header=TRUE)
colnames(data)[1] <- "gene1"
# Create column with name
data$Sample <- name
data$gene1_gene2 <- paste0(data$gene_id1, "_", data$gene_id2)
# Attach to concatenated table
ifelse(i == 1, fusions.df <- data, fusions.df <- rbind(fusions.df, data))
}
return(fusions.df)
}
# Create fusion heatmap
fusion_heatmap <- function(data, metadata = NULL, fusion_mode = "fusion", top_features = 50, custom_order_par = NULL) {
## metadata: data.frame with rownames = Sample IDs, and columns the metadata parameters to be annotated
# Initial parameter setting
ifelse(top_features > 50, show_rownames = FALSE, show_rownames = TRUE)
if (fusion_mode == "fusion") {
# Pre-processing
fusions.tbl <- data %>%
dplyr::rowwise() %>%
dplyr::mutate(fusion_mode_par = paste0(gene1, "_", gene2))
fusions.tbl <- unique(fusions.tbl[,c("Sample", "fusion_mode_par")])
fusions.tbl <- fusions.tbl %>%
group_by(Sample, fusion_mode_par) %>%
dplyr::summarise(num = n()) %>%
dplyr::ungroup() %>%
dplyr::group_by(fusion_mode_par) %>%
dplyr::mutate(tot_num = sum(num)) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(tot_num)) %>%
dplyr::filter(tot_num > 1)
} else if (fusion_mode == "gene") {
# Pre-processing
fusions.tbl <- data[,c("Sample", "gene1")]
colnames(fusions.tbl)[2] <- "gene2"
fusions.tbl <- rbind(fusions.tbl, data[,c("Sample", "gene2")])
colnames(fusions.tbl)[2] <- "fusion_mode_par"
fusions.tbl <- unique(fusions.tbl)
fusions.tbl <- fusions.tbl %>%
dplyr::filter(fusion_mode_par != ".") %>%
group_by(Sample, fusion_mode_par) %>%
dplyr::summarise(num = n()) %>%
dplyr::ungroup() %>%
dplyr::group_by(fusion_mode_par) %>%
dplyr::mutate(tot_num = sum(num)) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(tot_num)) %>%
dplyr::filter(tot_num > 1)
} else {
stop('Error: `fusion_mode` parameter not specfified correctly; choose from: "fusion", "gene"')
}
# Top feature to plot selection
topfeat <- fusions.tbl[, c("fusion_mode_par", "tot_num")]
topfeat <- unique(topfeat)
topfeat <- topfeat$fusion_mode_par[1:top_features]
# Pivot table
fusions.tbl.piv <- fusions.tbl[fusions.tbl$fusion_mode_par %in% topfeat,] %>%
dplyr::select(-tot_num) %>%
tidyr::pivot_wider(names_from = "Sample", values_from = "num") %>%
dplyr::mutate(across(.cols = everything(), ~replace_na(., 0)))
fusions.mat <- as.matrix(fusions.tbl.piv[,2:dim(fusions.tbl.piv)[2]])
rownames(fusions.mat) <- fusions.tbl.piv$fusion_mode_par
# Pre-processing for annotation
if (!is.null(metadata)) {
# Create annotation color scheme for heatmap
counter <- 1
anno_colors <- list()
for (i in 1:dim(metadata)[2]) {
j <- length(unique(metadata[,i]))
if (j == 1) {
assign(paste0("var",i), aya_palette[counter])
} else {
if (counter < 12 && (counter+j-1) <= 12) {
assign(paste0("var",i), aya_palette[counter:(counter+j-1)])
} else if (counter <= 12 && (counter+j-1) > 12) {
assign(paste0("var",i), aya_palette[c(counter:12, 1:((counter+j-1) %% 12))])
}
}
anno_colors$tmp <- get(paste0("var",i))
names(anno_colors)[i] <- colnames(metadata)[i]
counter <- (counter + j) %% 12
}
# Custom ordering
if (!is.null(custom_order_par)) {
custom_ord <- metadata$Sample[sort(metadata[,custom_order_par], index.return = TRUE)$ix]
custom_ord <- custom_ord[custom_ord %in% colnames(fusions.mat)]
fusions.mat <- fusions.mat[,custom_ord]
}
# Draw heatmap w/ annotation
return(
pheatmap(fusions.mat,
cluster_rows = TRUE,
cluster_cols = FALSE,
annotation_col = metadata,
annotation_colors = anno_colors,
show_rownames = show_rownames,
breaks = c(0,0.1,1),
color = c("white", "#a3c771")
)
)
} else {
# Draw heatmap w/out annotation
return(
pheatmap(fusions.mat,
cluster_rows = TRUE,
cluster_cols = TRUE,
show_rownames = show_rownames,
breaks = c(0,0.1,1),
color = c("white", "#a3c771")
)
)
}
}
# Perform fusion statistical tests (Fisher's)
fusion_stat_tests <- function(data, metadata, metadata_par, fusion_mode = "fusion", top_features = 100, pval = 0.1) {
if (fusion_mode == "fusion") {
# Pre-processing
fusions.tbl <- data %>%
dplyr::rowwise() %>%
dplyr::mutate(fusion_mode_par = paste0(gene1, "_", gene2))
fusions.tbl <- unique(fusions.tbl[,c("Sample", "fusion_mode_par")])
fusions.tbl <- fusions.tbl %>%
group_by(Sample, fusion_mode_par) %>%
dplyr::summarise(num = n()) %>%
dplyr::ungroup() %>%
dplyr::group_by(fusion_mode_par) %>%
dplyr::mutate(tot_num = sum(num)) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(tot_num)) %>%
dplyr::filter(tot_num > 1)
} else if (fusion_mode == "gene") {
# Pre-processing
fusions.tbl <- data[,c("Sample", "gene1")]
colnames(fusions.tbl)[2] <- "gene2"
fusions.tbl <- rbind(fusions.tbl, data[,c("Sample", "gene2")])
colnames(fusions.tbl)[2] <- "fusion_mode_par"
fusions.tbl <- unique(fusions.tbl)
fusions.tbl <- fusions.tbl %>%
dplyr::filter(fusion_mode_par != ".") %>%
group_by(Sample, fusion_mode_par) %>%
dplyr::summarise(num = n()) %>%
dplyr::ungroup() %>%
dplyr::group_by(fusion_mode_par) %>%
dplyr::mutate(tot_num = sum(num)) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(tot_num)) %>%
dplyr::filter(tot_num > 1)
} else {
stop('Error: `fusion_mode` parameter not specfified correctly; choose from: "fusion", "gene"')
}
# Pivot table
fusions.tbl.piv <- fusions.tbl %>%
dplyr::select(Sample, fusion_mode_par, num) %>%
tidyr::pivot_wider(names_from = "fusion_mode_par", values_from = "num") %>%
dplyr::mutate(across(.cols = everything(), ~replace_na(., 0)))
# Attach metadata
fusions.meta <- left_join(fusions.tbl.piv, metadata, by = "Sample")
for (i in 2:(top_features+1)) {
if (fisher.test(table(unlist(fusions.meta[,i]), unlist(fusions.meta[,metadata_par])))$p.value < pval) {
print(paste0("Found significant result for:", colnames(fusions.meta)[i]))
print(table(unlist(fusions.meta[,i]), unlist(fusions.meta[,metadata_par])))
print(fisher.test(table(unlist(fusions.meta[,i]), unlist(fusions.meta[,metadata_par]))))
cat("\n")
}
}
}