-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestfunction.py
97 lines (75 loc) · 2.91 KB
/
testfunction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 15 11:04:25 2018
@author: duans
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# 自定义损失函数
# 1. 继承nn.Mdule
class My_loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return torch.mean(torch.pow((x - y), 2))
# 2. 直接定义函数 , 不需要维护参数,梯度等信息
# 注意所有的数学操作需要使用tensor完成。
def my_mse_loss(x, y):
return torch.mean(torch.pow((x - y), 2))
# 3, 如果使用 numpy/scipy的操作 可能使用nn.autograd.function来计算了
# 要实现forward和backward函数
# Hyper-parameters 定义迭代次数, 学习率以及模型形状的超参数
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001
# Toy dataset 1. 准备数据集
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167], [7.042],
[10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221], [2.827],
[3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
# Linear regression model 2. 定义网络结构 y=w*x+b 其中w的size [1,1], b的size[1,]
model = nn.Linear(input_size, output_size)
# Loss and optimizer 3.定义损失函数, 使用的是最小平方误差函数
# criterion = nn.MSELoss()
# 自定义函数1
criterion = nn.MSELoss()
# 4.定义迭代优化算法, 使用的是随机梯度下降算法
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_dict = []
# Train the model 5. 迭代训练
for epoch in range(num_epochs):
# Convert numpy arrays to torch tensors 5.1 准备tensor的训练数据和标签
inputs = torch.from_numpy(x_train)
targets = torch.from_numpy(y_train)
# Forward pass 5.2 前向传播计算网络结构的输出结果
outputs = model(inputs)
# 5.3 计算损失函数
# loss = criterion(outputs, targets)
# 1. 自定义函数1
# loss = criterion(outputs, targets)
# 2. 自定义函数
loss = my_mse_loss(outputs, targets)
# Backward and optimize 5.4 反向传播更新参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 可选 5.5 打印训练信息和保存loss
loss_dict.append(loss.item())
if (epoch + 1) % 5 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, loss.item()))
# Plot the graph 画出原y与x的曲线与网络结构拟合后的曲线
predicted = model(torch.from_numpy(x_train)).detach().numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
# 画loss在迭代过程中的变化情况
plt.plot(loss_dict, label='loss for every epoch')
plt.legend()
plt.show()
exit(0)