forked from mpollice/AmdMsrTweaker
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInfo.cpp
820 lines (650 loc) · 23.1 KB
/
Info.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
* Copyright (c) Martin Kinkelin
*
* See the "License.txt" file in the root directory for infos
* about permitted and prohibited uses of this code.
*/
#include <algorithm> // for min/max
#include <exception>
#include "Info.h"
#include "WinRing0.h"
using std::min;
using std::max;
// divisors for families 0x10 and 0x15
static const double DIVISORS_10_15[] = { 1.0, 2.0, 4.0, 8.0, 16.0, 0.0 };
// special divisors for family 0x12
static const double DIVISORS_12[] = { 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0, 0.0 };
void FindFraction(double value, const double* divisors,
int& numerator, int& divisorIndex,
int minNumerator, int maxNumerator);
bool Info::Initialize()
{
CpuidRegs regs;
QWORD msr;
DWORD eax;
// verify vendor = AMD ("AuthenticAMD")
regs = Cpuid(0x80000000);
if (regs.ecx != 0x444d4163) // "DMAc"
return false;
// check family
regs = Cpuid(0x80000001);
Family = GetBits(regs.eax, 8, 4) + GetBits(regs.eax, 20, 8);
if (!(Family == 0x10 || Family == 0x12 || Family == 0x14 || Family == 0x15))
return false;
// read model
Model = GetBits(regs.eax, 4, 4) + (GetBits(regs.eax, 16, 4) << 4);
//set VID step for SVI2 platforms (otherwise 0.0125 is assumed, see header)
// Family 0x15 Models 10-1F is Trinity/Richland
// Family 0x15 Models 30-3F is Kaveri
if (Family == 0x15 && ((Model > 0xF && Model < 0x20) || (Model > 0x2F && Model < 0x40)))
VIDStep = 0.00625;
// scale factor from external multi to internal one (default 1, set for 200MHz REFCLK platforms)
// Family 0x10 includes all AM2+/AM3 K10 CPUs
// Family 0x15 Models 0-F is Bulldozer/Piledriver
if (Family == 0x10 || (Family == 0x15 && Model < 0x10))
multiScaleFactor = 2.0;
// number of physical cores
regs = Cpuid(0x80000008);
NumCores = GetBits(regs.ecx, 0, 8) + 1;
// number of hardware P-states
eax = ReadPciConfig(AMD_CPU_DEVICE, 3, 0xdc); // D18F3xDC Clock Power/Timing Control 2
NumPStates = GetBits(eax, 8, 3) + 1; // HwPstateMaxVal[2:0]
eax = ReadPciConfig(AMD_CPU_DEVICE, 3, 0xA0); // D18F3xA0 Power Control Miscellaneous
PsiVidEn = GetBits(eax, 7, 1); // PsiVidEn
PsiVid = GetBits(eax, 0, 7); // PsiVid[6:0]
const int PsiVid7 = GetBits(eax, 8, 1); // PsiVidEn[7]
PsiVid += (PsiVid7 << 7); // PsiVid[7:0]
if (Family == 0x15)
{
eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x170); // D18F5x170 Northbridge P-state Control
NumNBPStates = GetBits(eax, 0, 2) + 1; // NbPstateMaxVal[1:0]
NBPStateLo = GetBits(eax, 3, 2); // NbPstateLo[1:0]
NBPStateHi = GetBits(eax, 6, 2); // NbPstateHi[1:0]
NbPstateGnbSlowDis = GetBits(eax, 23, 1); // NbPstateGnbSlowDis
IsDynMemPStateChgEnabled = GetBits(eax, 31, 1) == 0 ? true : false; // MemPstateDis
eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x174); // D18F5x174 Northbridge P-state Status
StartupNbPstate = GetBits(eax, 1, 2); // StartupNbPstate[2:1]
eax = ReadPciConfig(AMD_CPU_DEVICE, 3, 0xE8); // D18F3xE8 Northbridge Capabilities
NumMemPStates = GetBits(eax, 24, 1) + 1; // MemPstateCap
// The index/data pair registers, D0F0xB8 and D0F0xBC, are used to access the registers at
// D0F0xBC_x[FFFFFFFF:00000000].To access any of these registers, the address is first written into the index
// register, D0F0xB8, and then the data is read from or written to the data register, D0F0xBC.
eax = 0x0003F9E8; // D0F0xBC_x3F9E8 NB_DPM_CONFIG_1
WritePciConfig(0, 0, 0xB8, eax); // D0F0xBC_x3F9E8 NB_DPM_CONFIG_1
eax = ReadPciConfig(0, 0, 0xBC); // D0F0xBC_x3F9E8 NB_DPM_CONFIG_1
NBPStateHiGPU = GetBits(eax, 24, 8); // DpmXNbPsHi[7:0]
NBPStateLoGPU = GetBits(eax, 16, 8); // DpmXNbPsLo[7:0]
NBPStateHiCPU = GetBits(eax, 8, 8); // Dpm0PgNbPsHi[7:0]
NBPStateLoCPU = GetBits(eax, 0, 8); // Dpm0PgNbPsLo[7:0]
eax = ReadPciConfig(AMD_CPU_DEVICE, 2, 0x94); // D18F2x94_dct[3:0] DRAM Configuration High
MemClkFreqVal = GetBits(eax, 7, 1); // MemClkFreqVal
eax = ReadPciConfig(AMD_CPU_DEVICE, 2, 0x2E0); // D18F2x2E0_dct[3:0] Memory P-state Control and Status
FastMstateDis = GetBits(eax, 30, 1); // FastMstateDis
eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x178); // D18F5x178 Northbridge Fusion Configuration
SwGfxDis = GetBits(eax, 19, 1); // SwGfxDis
eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x17C); // D18F5x17C Miscellaneous Voltages
NbPsi0Vid = GetBits(eax, 23, 8); // NbPsi0Vid[7:0]
NbPsi0VidEn = GetBits(eax, 31, 1); // NbPsi0VidEn
// The index/data pair registers, D0F0xB8 and D0F0xBC, are used to access the registers at
// D0F0xBC_x[FFFFFFFF:00000000].To access any of these registers, the address is first written into the index
// register, D0F0xB8, and then the data is read from or written to the data register, D0F0xBC.
eax = 0x0003FDC8; // D0F0xBC_x3FDC8 SMU_LCLK_DPM_CNTL
WritePciConfig(0, 0, 0xB8, eax); // D0F0xBC_x3FDC8 SMU_LCLK_DPM_CNTL
eax = ReadPciConfig(0, 0, 0xBC); // D0F0xBC_x3FDC8 SMU_LCLK_DPM_CNTL
LclkDpmBootState = GetBits(eax, 8, 8); // LclkDpmBootState[7:0]
VoltageChgEn = GetBits(eax, 16, 8); // VoltageChgEn[7:0]
LclkDpmEn = GetBits(eax, 24, 8); // LclkDpmEn[7:0]
}
if( Family == 0x12 || Family == 0x15 )
{
GpuEnabled = 0;
eax = ReadPciConfig( 1, 0, 0x00 ); // GpuEnabled = (D1F0x00!=FFFF_FFFFh)
if( eax != 0xFFFFFFFF ) // GpuEnabled = (D1F0x00!=FFFF_FFFFh)
GpuEnabled = 1;
eax = ReadPciConfig( 0, 0, 0x7C ); // D0F0x7C IOC Configuration Control
ForceIntGfxDisable = GetBits( eax, 0, 0 ); // ForceIntGfxDisable
}
// get limits
msr = Rdmsr(0xc0010071);
const int maxMulti = GetBits(msr, 49, 6);
const int minVID = GetBits(msr, 42, 7);
const int maxVID = GetBits(msr, 35, 7);
NbPstateDis = GetBits(msr, 23, 1);
MinMulti = (Family == 0x14 ? (maxMulti == 0 ? 0 : (maxMulti + 16) / 26.5)
: 1.0);
MaxMulti = (maxMulti == 0 ? (Family == 0x14 ? 0
: (Family == 0x12 ? 31 + 16 : 47 + 16))
: (Family == 0x12 || Family == 0x14 ? maxMulti + 16 : maxMulti));
MaxSoftwareMulti = MaxMulti;
MinVID = (minVID == 0 ? 0.0
: DecodeVID(minVID));
MaxVID = (maxVID == 0 ? 1.55
: DecodeVID(maxVID));
// is CBP (core performance boost) supported?
regs = Cpuid(0x80000007);
IsBoostSupported = (GetBits(regs.edx, 9, 1) == 1);
if (IsBoostSupported)
{
// is CPB disabled for the current core?
msr = Rdmsr(0xc0010015);
const bool cpbDis = (GetBits(msr, 25, 1) == 1);
// boost lock, number of boost P-states and boost source
eax = ReadPciConfig(AMD_CPU_DEVICE, 4, 0x15c);
IsBoostLocked = (Family == 0x12 ? true
: GetBits(eax, 31, 1) == 1);
NumBoostStates = (Family == 0x10 ? GetBits(eax, 2, 1)
: GetBits(eax, 2, 3));
BoostEnAllCores = ( Family == 0x12 ? GetBits( eax, 29, 1 ) : -1 );
IgnoreBoostThresh = ( Family == 0x12 ? GetBits( eax, 28, 1 ) : -1 );
const int boostSrc = GetBits(eax, 0, 2);
const bool isBoostSrcEnabled = (Family == 0x10 ? (boostSrc == 3)
: (boostSrc == 1));
IsBoostEnabled = (isBoostSrcEnabled && !cpbDis);
// max multi for software P-states (families 0x10 and 0x15)
if (Family == 0x10)
{
eax = ReadPciConfig(AMD_CPU_DEVICE, 3, 0x1f0);
const int maxSoftwareMulti = GetBits(eax, 20, 6);
MaxSoftwareMulti = (maxSoftwareMulti == 0 ? 63
: maxSoftwareMulti);
}
else if (Family == 0x15)
{
eax = ReadPciConfig(AMD_CPU_DEVICE, 3, 0xd4);
const int maxSoftwareMulti = GetBits(eax, 0, 6);
MaxSoftwareMulti = (maxSoftwareMulti == 0 ? 63
: maxSoftwareMulti);
}
}
return true;
}
PStateInfo Info::ReadPState(int index) const
{
const QWORD msr = Rdmsr(0xc0010064 + index); // MSRC001_00[6B:64] P-state [7:0]
PStateInfo result;
result.Index = index;
int fid, did;
if (Family == 0x14)
{
fid = GetBits(msr, 4, 5); // DID MSD
did = GetBits(msr, 0, 4); // DID LSD
}
else if (Family == 0x12)
{
fid = GetBits(msr, 4, 5);
did = GetBits(msr, 0, 4);
}
else
{
fid = GetBits(msr, 0, 6);
did = GetBits(msr, 6, 3);
}
result.Multi = DecodeMulti(fid, did);
//on SVI2 platforms, VID is 8 bits
if (Family == 0x15 && ((Model > 0xF && Model < 0x20) || (Model > 0x2F && Model < 0x40)))
result.VID = GetBits(msr, 9, 8);
else
result.VID = GetBits(msr, 9, 7);
if (!(Family == 0x12 || Family == 0x14))
{
const int nbpstate = GetBits(msr, 22, 1); // NbPstate
result.NBPState = nbpstate;
}
else
result.NBPState = -1;
if (Family == 0x10)
{
result.NBVID = GetBits(msr, 25, 7);
}
else
result.NBVID = -1;
return result;
}
void Info::WritePState(const PStateInfo& info) const
{
const DWORD regIndex = 0xc0010064 + info.Index;
QWORD msr = Rdmsr(regIndex);
if (info.Multi >= 0)
{
int fid, did;
EncodeMulti(info.Multi, fid, did);
if (Family == 0x14)
{
SetBits(msr, fid, 4, 5); // DID MSD
SetBits(msr, did, 0, 4); // DID LSD
}
else if (Family == 0x12)
{
SetBits(msr, fid, 4, 5);
SetBits(msr, did, 0, 4);
}
else
{
SetBits(msr, fid, 0, 6);
SetBits(msr, did, 6, 3);
}
}
if (info.VID >= 0)
{
//on SVI2 platforms, VID is 8 bits
if (Family == 0x15 && ((Model > 0xF && Model < 0x20) || (Model > 0x2F && Model < 0x40)))
SetBits(msr, info.VID, 9, 8);
else
SetBits(msr, info.VID, 9, 7);
}
if (info.NBPState >= 0)
{
if (!(Family == 0x12 || Family == 0x14))
{
const int nbDid = max(0, min(1, info.NBPState));
SetBits(msr, nbDid, 22, 1);
}
}
if (info.NBVID >= 0)
{
if (Family == 0x10)
{
SetBits(msr, info.NBVID, 25, 7);
}
}
Wrmsr(regIndex, msr);
}
NBPStateInfo Info::ReadNBPState(int index) const
{
if (Family != 0x15)
throw std::exception("NB P-states not supported");
NBPStateInfo result;
result.Index = index;
const DWORD eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x160 + index * 4); // D18F5x16[C:0] Northbridge P-state [3:0]
const int enabled = GetBits(eax, 0, 1); // NbPstateEn
const int fid = GetBits(eax, 1, 5); // NbFid[5:0]
const int did = GetBits(eax, 7, 1); // NbDid
int vid = GetBits(eax, 10, 7); // NbVid[6:0]
const int mempstate = GetBits(eax, 18, 1); // MemPstate
const int vid7 = GetBits(eax, 21, 1); // NbVid[7]
//on SVI2 platforms, 8th bit for NB P-State is stored separately
if (Family == 0x15 && ((Model > 0xF && Model < 0x20) || (Model > 0x2F && Model < 0x40)))
vid += (vid7 << 7);
result.Enabled = enabled;
result.Multi = (fid + 4) / pow(2.0, did);
result.VID = vid;
result.MemPState = mempstate;
return result;
}
void Info::WriteNBPState(const NBPStateInfo& info) const
{
if (Family != 0x15)
throw std::exception("NB P-states not supported");
const DWORD regAddress = 0x160 + info.Index * 4;
DWORD eax = ReadPciConfig(AMD_CPU_DEVICE, 5, regAddress);
if (info.Multi >= 0)
{
static const double divisors[] = { 1.0, 2.0, 0.0 }; // 2^did
int numerator, divisorIndex;
FindFraction(info.Multi, divisors, numerator, divisorIndex, 4, 31 + 4);
const int fid = numerator - 4;
const int did = divisorIndex;
SetBits(eax, fid, 1, 5);
SetBits(eax, did, 7, 1);
}
if (info.VID >= 0)
{
SetBits(eax, info.VID, 10, 7);
//on SVI2 platforms, 8th bit for NB P-State is stored separately
if (Family == 0x15 && ((Model > 0xF && Model < 0x20) || (Model > 0x2F && Model < 0x40)))
SetBits(eax, (info.VID >> 7), 21, 1);
}
WritePciConfig(AMD_CPU_DEVICE, 5, regAddress, eax);
}
MemPStateInfo Info::ReadMemPState(int index) const
{
if (Family != 0x15)
throw std::exception("Mem P-states not supported");
MemPStateInfo result;
result.Index = index;
DWORD eax;
int memclkfreq = 0;
double memclkfreq_calc = -1.0;
if (index == 0)
{
eax = ReadPciConfig(AMD_CPU_DEVICE, 2, 0x94); // D18F2x94_dct[3:0] DRAM Configuration High
memclkfreq = GetBits(eax, 0, 5); // MemClkFreq[4:0]
}
else if (index == 1)
{
eax = ReadPciConfig(AMD_CPU_DEVICE, 2, 0x2E0); // D18F2x2E0_dct[3:0] Memory P-state Control and Status
memclkfreq = GetBits(eax, 24, 5); // M1MemClkFreq[4:0]
}
switch (memclkfreq)
{
case 0x02:
memclkfreq_calc = 200.0;
break;
case 0x04:
memclkfreq_calc = 333.3;
break;
case 0x06:
memclkfreq_calc = 400.0;
break;
case 0x0A:
memclkfreq_calc = 533.3;
break;
case 0x0E:
memclkfreq_calc = 666.6;
break;
case 0x12:
memclkfreq_calc = 800.0;
break;
case 0x16:
memclkfreq_calc = 933.3;
break;
case 0x1A:
memclkfreq_calc =1066.6;
break;
case 0x1F:
memclkfreq_calc = 1200.0;
break;
default:
memclkfreq_calc = -1.0; // invalid
}
result.MemClkFreq = memclkfreq_calc;
return result;
}
iGPUPStateInfo Info::ReadiGPUPState(int index) const
{
if (Family != 0x15)
throw std::exception("iGPU P-states not supported");
iGPUPStateInfo result;
result.Index = index;
DWORD eax;
// The index/data pair registers, D0F0xB8 and D0F0xBC, are used to access the registers at
// D0F0xBC_x[FFFFFFFF:00000000].To access any of these registers, the address is first written into the index
// register, D0F0xB8, and then the data is read from or written to the data register, D0F0xBC.
eax = 0x0003FD00 + index * 0x14; // D0F0xBC_x3FD[8C:00:step14] LCLK DPM Control 0
WritePciConfig(0, 0, 0xB8, eax); // D0F0xBC_x3FD[8C:00:step14] LCLK DPM Control 0
eax = ReadPciConfig(0, 0, 0xBC); // D0F0xBC_x3FD[8C:00:step14] LCLK DPM Control 0
int statevalid = GetBits(eax, 24, 8); // StateValid[7:0]
int lclkdivider = GetBits(eax, 16, 8); // LclkDivider[7:0]
int vid = GetBits(eax, 8, 8); // VID[7:0]
int lowvoltagereqthreshold = GetBits(eax, 0, 8); // LowVoltageReqThreshold[7:0]
result.StateValid = statevalid;
result.LclkDivider = lclkdivider;
result.VID = vid;
result.LowVoltageReqThreshold = lowvoltagereqthreshold;
return result;
}
DRAMInfo Info::ReadDRAMInfo( int index ) const
{
if( Family != 0x12 )
throw std::exception( "DRAMInfo not supported" );
if( index != 0 && index != 1 )
throw std::exception( "Index out of range" );
DRAMInfo result;
DWORD eax;
int MRSReg_idx = 0x84;
int TimingLowReg_idx = 0x88;
int ConfigHighReg_idx = 0x94;
int XDOffsetReg_idx = 0xF0;
int XDPortReg_idx = 0xF4;
if( index == 1 )
{
MRSReg_idx += 0x100;
TimingLowReg_idx += 0x100;
ConfigHighReg_idx += 0x100;
XDOffsetReg_idx += 0x100;
XDPortReg_idx += 0x100;
}
// D18F2x[1,0]88 (DRAM Timing Low Register)
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, TimingLowReg_idx );
result.tCL = GetBits( eax, 0, 4 ) + 4; // [3:0] Tcl (- 4)
// D18F2x[1,0]F0 (DRAM Controller Extra Data Offset Register)
// This register is paired with D18F2x[1,0]F4 (DRAM Controller Extra Data Port)
// To read a DRAM Extra Data register, write the offset to F0 first, then F4 will be populated with that register.
// For example, to read D18F2x[1,0]F4_x40 (DRAM Timing 0), you first write the offset (x40) to F0, as shown here.
WritePciConfig( AMD_CPU_DEVICE, 2, XDOffsetReg_idx, 0x40 );
// Now F4 is populated with that register.
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, XDPortReg_idx );
result.tRCD = GetBits( eax, 0, 4 ) + 5; // [3:0] Trcd (- 5)
result.tRP = GetBits( eax, 8, 4 ) + 5; // [11:8] Trp (- 5)
result.tRAS = GetBits( eax, 16, 5 ) + 15; // [20:16] Tras (- 15)
result.tRC = GetBits( eax, 24, 6 ) + 16; // [29:24] Trc (- 16)
// !! EXAMPLE WRITE CODE !! //
#if YOU_ARE_INSANE
// Get the original register value (it has to be written completely)
WritePciConfig( AMD_CPU_DEVICE, 2, XDOffsetReg_idx, 0x40 );
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, XDPortReg_idx );
// Modify only the bits to be changed
SetBits( eax, 4, 8, 4 );
// Write the new value to F4
WritePciConfig( AMD_CPU_DEVICE, 2, XDPortReg_idx, eax );
// Write the F4 offset to F0, with bit 30 (0-index, 31 for 1-index) set to 1 ("DctAccessWrite")
WritePciConfig( AMD_CPU_DEVICE, 2, XDOffsetReg_idx, 0x40000040 );
#endif
// D18F2x[1,0]F4_x41 (DRAM Timing 1)
WritePciConfig( AMD_CPU_DEVICE, 2, XDOffsetReg_idx, 0x41 );
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, XDPortReg_idx );
result.tRTP = GetBits( eax, 0, 3 ) + 4; // [2:0] Trtp (- 4)
result.tRRD = GetBits( eax, 8, 3 ) + 4; // [10:8] Trrd (- 4)
result.tWTR = GetBits( eax, 16, 3 ) + 4; // [18:16] Twtr (- 4)
// D18F2x[1,0]94 (DRAM Configuration High Register)
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, ConfigHighReg_idx );
result.CR = GetBits( eax, 20, 1 ) + 1; // [20] SlowAccessMode
switch( GetBits( eax, 0, 5 ) ) // [4:0] MemClkFreq
{
// There may be some way to calculate freq from those bits directly,
// however the BKDG documents only these values as being valid,
// so it's probably best to just do it this way.
case 0b00110:
result.Freq = 400;
break;
case 0b01010:
result.Freq = 533;
break;
case 0b01110:
result.Freq = 667;
break;
case 0b10010:
result.Freq = 800;
break;
case 0b10110:
result.Freq = 933;
break;
default:
result.Freq = -1;
break;
}
// D18F2x[1,0]84 (DRAM MRS Register)
eax = ReadPciConfig( AMD_CPU_DEVICE, 2, MRSReg_idx );
int twr = GetBits( eax, 4, 3 ); // [6:4] Twr
// TODO: Surely there's some one-liner thing to calculate at least >= 0b001 ???
if( twr >= 0b100 )
result.tWR = twr << 1;
else if( twr >= 0b001 )
result.tWR = twr | 0b100;
else if( twr >= 0b000 )
result.tWR = 16;
result.tCWL = GetBits( eax, 20, 3 ) + 5; // [22:20] Tcwl
return result;
}
void Info::SetCPBDis(bool enabled) const
{
if (!IsBoostSupported)
throw std::exception("CPB not supported");
const DWORD index = 0xc0010015;
QWORD msr = Rdmsr(index);
SetBits(msr, (enabled ? 0 : 1), 25, 1);
Wrmsr(index, msr);
}
void Info::SetBoostSource(bool enabled) const
{
if (!IsBoostSupported)
throw std::exception("CPB not supported");
DWORD eax = ReadPciConfig(AMD_CPU_DEVICE, 4, 0x15c);
const int bits = (enabled ? (Family == 0x10 ? 3 : 1)
: 0);
SetBits(eax, bits, 0, 2);
WritePciConfig(AMD_CPU_DEVICE, 4, 0x15c, eax);
}
void Info::SetBoostEnAllCores( int val ) const
{
if( !IsBoostSupported )
throw std::exception( "Boost not supported" );
if( BoostEnAllCores == -1 || Family != 0x12 )
throw std::exception( "BoostEnAllCores not supported" );
if( val != 1 && val != 0 )
throw std::exception( "Value out of range" );
// D18F4x15C (Core Performance Boost Control)
DWORD eax = ReadPciConfig( AMD_CPU_DEVICE, 4, 0x15c );
SetBits( eax, val, 29, 1 ); // [29] BoostEnAllCores
WritePciConfig( AMD_CPU_DEVICE, 4, 0x15c, eax );
}
void Info::SetIgnoreBoostThresh( int val ) const
{
if( !IsBoostSupported )
throw std::exception( "Boost not supported" );
if( IgnoreBoostThresh == -1 || Family != 0x12 )
throw std::exception( "IgnoreBoostThresh not supported" );
if( val != 1 && val != 0 )
throw std::exception( "Value out of range" );
// D18F4x15C (Core Performance Boost Control)
DWORD eax = ReadPciConfig( AMD_CPU_DEVICE, 4, 0x15c );
SetBits( eax, val, 28, 1 ); // [28] IgnoreBoostThresh
WritePciConfig( AMD_CPU_DEVICE, 4, 0x15c, eax );
}
void Info::SetAPM(bool enabled) const
{
if (Family != 0x15)
throw std::exception("APM not supported");
DWORD eax = ReadPciConfig(AMD_CPU_DEVICE, 4, 0x15c);
SetBits(eax, (enabled ? 1 : 0), 7, 1);
WritePciConfig(AMD_CPU_DEVICE, 4, 0x15c, eax);
}
void Info::WriteNbPsi0Vid(const int VID) const
{
if (Family != 0x15)
throw std::exception("NB P-states not supported");
DWORD eax = ReadPciConfig(AMD_CPU_DEVICE, 5, 0x17C); // D18F5x17C Miscellaneous Voltages
//GetBits(eax, 23, 8); // NbPsi0Vid[7:0]
//GetBits(eax, 31, 1); // NbPsi0VidEn
if (VID >= 0)
{
SetBits(eax, VID, 23, 8);
}
WritePciConfig(AMD_CPU_DEVICE, 5, 0x17C, eax);
}
int Info::GetCurrentPState() const
{
const QWORD msr = Rdmsr(0xc0010071);
const int i = GetBits(msr, 16, 3);
return i;
}
void Info::SetCurrentPState(int index) const
{
if (index < 0 || index >= NumPStates)
throw std::exception("P-state index out of range");
index -= NumBoostStates;
if (index < 0)
index = 0;
const DWORD regIndex = 0xc0010062;
QWORD msr = Rdmsr(regIndex);
SetBits(msr, index, 0, 3);
Wrmsr(regIndex, msr);
}
double Info::DecodeMulti(int fid, int did) const
{
if (Family == 0x14)
{
// fid => DID MSD (integral part of divisor - 1)
// did => DID LSD (fractional part of divisor, in quarters)
double divisor = fid + 1;
if (divisor >= 16)
did &= ~1; // ignore least significant bit of LSD
divisor += did * 0.25;
return MaxMulti / divisor;
}
const double* divisors = (Family == 0x12 ? DIVISORS_12
: DIVISORS_10_15);
return (fid + 16) / divisors[did];
}
void Info::EncodeMulti(double multi, int& fid, int& did) const
{
if (Family == 0x14)
{
if (MaxMulti == 0)
throw std::exception("cannot encode multiplier (family 0x14) - unknown max multiplier");
const double exactDivisor = max(1.0, min(26.5, MaxMulti / multi));
double integer;
const double fractional = modf(exactDivisor, &integer);
fid = (int)integer - 1;
did = (int)ceil(fractional / 0.25);
if (integer >= 16)
{
if (did == 1)
did = 2;
else if (did == 3)
did = 4;
}
if (did == 4)
{
fid++;
did = 0;
}
return;
}
const int minNumerator = 16; // numerator: 0x10 = 16 as fixed offset
int maxNumerator;
const double* divisors;
if (Family == 0x12)
{
maxNumerator = 31 + minNumerator; // 5 bits => max 2^5-1 = 31
divisors = DIVISORS_12;
}
else
{
maxNumerator = 47 + minNumerator; // 6 bits, but max 0x2f = 47
divisors = DIVISORS_10_15;
}
int numerator, divisorIndex;
FindFraction(multi, divisors, numerator, divisorIndex, minNumerator, maxNumerator);
fid = numerator - minNumerator;
did = divisorIndex;
}
double Info::DecodeVID(int vid) const
{
return 1.55 - vid * VIDStep;
}
int Info::EncodeVID(double vid) const
{
vid = max(0.0, min(1.55, vid));
// round to nearest step
int r = (int)(vid / VIDStep + 0.5);
//1.55 / VIDStep = highest VID (0 V)
return (int)(1.55 / VIDStep) - r;
}
void FindFraction(double value, const double* divisors,
int& numerator, int& divisorIndex,
int minNumerator, int maxNumerator)
{
// limitations: non-negative value and divisors
// count the null-terminated and ascendingly ordered divisors
int numDivisors = 0;
for (; divisors[numDivisors] > 0; numDivisors++) { }
// make sure the value is in a valid range
value = max(minNumerator / divisors[numDivisors-1], min(maxNumerator / divisors[0], value));
// search the best-matching combo
double bestValue = -1.0; // numerator / divisors[divisorIndex]
for (int i = 0; i < numDivisors; i++)
{
const double d = divisors[i];
const int n = max(minNumerator, min(maxNumerator, (int)(value * d)));
const double myValue = n / d;
if (myValue <= value && myValue > bestValue)
{
numerator = n;
divisorIndex = i;
bestValue = myValue;
if (bestValue == value)
break;
}
}
}