-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo4.py
108 lines (99 loc) · 4.48 KB
/
demo4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from manimx import *
class TexTransformExample(Scene):
def construct(self):
to_isolate = ["B", "C", "=", "(", ")"]
lines = VGroup(
# Passing in muliple arguments to Tex will result
# in the same expression as if those arguments had
# been joined together, except that the submobject
# hierarchy of the resulting mobject ensure that the
# Tex mobject has a subject corresponding to
# each of these strings. For example, the Tex mobject
# below will have 5 subjects, corresponding to the
# expressions [A^2, +, B^2, =, C^2]
Tex("A^2", "+", "B^2", "=", "C^2"),
# Likewise here
Tex("A^2", "=", "C^2", "-", "B^2"),
# Alternatively, you can pass in the keyword argument
# "isolate" with a list of strings that should be out as
# their own submobject. So the line below is equivalent
# to the commented out line below it.
Tex("A^2 = (C + B)(C - B)", isolate=["A^2", *to_isolate]),
# Tex("A^2", "=", "(", "C", "+", "B", ")", "(", "C", "-", "B", ")"),
Tex("A = \\sqrt{(C + B)(C - B)}", isolate=["A", *to_isolate])
)
lines.arrange(DOWN, buff=LARGE_BUFF)
for line in lines:
line.set_color_by_tex_to_color_map({
"A": BLUE,
"B": TEAL,
"C": GREEN,
})
play_kw = {"run_time": 2}
self.add(lines[0])
# The animation TransformMatchingTex will line up parts
# of the source and target which have matching tex strings.
# Here, giving it a little path_arc makes each part sort of
# rotate into their final positions, which feels appropriate
# for the idea of rearranging an equation
self.play(
TransformMatchingTex(
lines[0].copy(), lines[1],
path_arc=90 * DEGREES,
),
**play_kw
)
self.wait()
# Now, we could try this again on the next line...
self.play(
TransformMatchingTex(lines[1].copy(), lines[2]),
**play_kw
)
self.wait()
# ...and this looks nice enough, but since there's no tex
# in lines[2] which matches "C^2" or "B^2", those terms fade
# out to nothing while the C and B terms fade in from nothing.
# If, however, we want the C^2 to go to C, and B^2 to go to B,
# we can specify that with a key map.
self.play(FadeOut(lines[2]))
self.play(
TransformMatchingTex(
lines[1].copy(), lines[2],
key_map={
"C^2": "C",
"B^2": "B",
}
),
**play_kw
)
self.wait()
# And to finish off, a simple TransformMatchingShapes would work
# just fine. But perhaps we want that exponent on A^2 to transform into
# the square root symbol. At the moment, lines[2] treats the expression
# A^2 as a unit, so we might create a new version of the same line which
# separates out just the A. This way, when TransformMatchingTex lines up
# all matching parts, the only mismatch will be between the "^2" from
# new_line2 and the "\sqrt" from the final line. By passing in,
# transform_mismatches=True, it will transform this "^2" part into
# the "\sqrt" part.
new_line2 = Tex("A^2 = (C + B)(C - B)", isolate=["A", *to_isolate])
new_line2.replace(lines[2])
new_line2.match_style(lines[2])
self.play(TransformMatchingTex(new_line2, lines[3]), **play_kw)
self.wait(3)
self.play(FadeOut(lines, RIGHT))
# Alternatively, if you don't want to think about breaking up
# the tex strings deliberately, you can TransformMatchingShapes,
# which will try to line up all pieces of a source mobject with
# those of a target, regardless of the submobject hierarchy in
# each one, according to whether those pieces have the same
# shape (as best it can).
source = Text("the morse code", height=1)
target = Text("here come dots", height=1)
self.play(Write(source))
self.wait()
kw = {"run_time": 3, "path_arc": PI / 2}
self.play(TransformMatchingShapes(source, target, **kw))
self.wait()
self.play(TransformMatchingShapes(target, source, **kw))
self.wait()