-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdb_data_import.py
41 lines (26 loc) · 1.51 KB
/
db_data_import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
IF_EXISTS_OPT = 'append' # 'fail', 'replace', or 'append', see https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
import os
import sys
import sqlalchemy #import create_engine
import psycopg2
# Local modules/libary files:
import db_creds
def send_data_to_db(log_file_path, dfs, table_name_base, table_name_suffixes=None, dtypes=None):
log_file_name = os.path.basename(log_file_path)
db_access_str = f'postgresql://{db_creds.DB_USER}:{db_creds.DB_PASSWORD}@{db_creds.DB_HOST}:{db_creds.DB_PORT}/{db_creds.DB_NAME}'
engine = sqlalchemy.create_engine(db_access_str)
table_names = []
# Put data in database
for df_idx, df in enumerate(dfs):
if_exists_opt_loc = IF_EXISTS_OPT
table_name = table_name_base
if table_name_suffixes:
table_name = table_name + '_' + table_name_suffixes[df_idx]
try:
df.to_sql(table_name, engine, method='multi', if_exists=if_exists_opt_loc, index=False, dtype=dtypes)
except (sqlalchemy.exc.OperationalError, psycopg2.OperationalError) as e:
sys.exit(f"\n\n\033[1m\033[91mERROR writing to database:\n {e}\033[0m\n\nExiting.\n\n") # Print error text bold and red
table_names.append(table_name)
return table_names
# TODO: Create separate table for log file IDs and names. Check what the current larged ID is, then append a column to
# the dfs with that ID + 1, and a row to the log file table with that ID and the log file name, or something like that