-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain.py
502 lines (462 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# Ke Chen
# knutchen@ucsd.edu
# Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data
# The Main Script
import os
# this is to avoid the sdr calculation from occupying all cpus
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["MKL_NUM_THREADS"] = "6"
os.environ["VECLIB_MAXIMUM_THREADS"] = "4"
os.environ["NUMEXPR_NUM_THREADS"] = "6"
import sys
import librosa
import numpy as np
import argparse
import logging
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from utils import collect_fn, dump_config, create_folder, prepprocess_audio
import musdb
from models.asp_model import ZeroShotASP, SeparatorModel, AutoTaggingWarpper, WhitingWarpper
from data_processor import LGSPDataset, MusdbDataset
import config
import htsat_config
from models.htsat import HTSAT_Swin_Transformer
from sed_model import SEDWrapper
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from htsat_utils import process_idc
import warnings
warnings.filterwarnings("ignore")
class data_prep(pl.LightningDataModule):
def __init__(self, train_dataset, eval_dataset, device_num, config):
super().__init__()
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.device_num = device_num
self.config = config
def train_dataloader(self):
train_sampler = DistributedSampler(self.train_dataset, shuffle = False) if self.device_num > 1 else None
train_loader = DataLoader(
dataset = self.train_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = train_sampler,
collate_fn = collect_fn
)
return train_loader
def val_dataloader(self):
eval_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None
eval_loader = DataLoader(
dataset = self.eval_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = eval_sampler,
collate_fn = collect_fn
)
return eval_loader
def test_dataloader(self):
test_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None
test_loader = DataLoader(
dataset = self.eval_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = test_sampler,
collate_fn = collect_fn
)
return test_loader
def save_idc():
train_index_path = os.path.join(config.dataset_path, "hdf5s", "indexes", config.index_type + ".h5")
eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5")
process_idc(train_index_path, config.classes_num, config.index_type + "_idc.npy")
process_idc(eval_index_path, config.classes_num, "eval_idc.npy")
# Process the musdb tracks into the sample rate of 32000 Hz sample rate, the original is 44100 Hz
def process_musdb():
# use musdb as testset
test_data = musdb.DB(
root = config.musdb_path,
download = False,
subsets = "test",
is_wav = True
)
print(len(test_data.tracks))
mus_tracks = []
# in musdb, all fs is the same (44100)
orig_fs = test_data.tracks[0].rate
print(orig_fs)
for track in test_data.tracks:
temp = {}
mixture = prepprocess_audio(
track.audio,
orig_fs, config.sample_rate,
config.test_type
)
temp["mixture" ]= mixture
for dickey in config.test_key:
source = prepprocess_audio(
track.targets[dickey].audio,
orig_fs, config.sample_rate,
config.test_type
)
temp[dickey] = source
print(track.audio.shape, len(temp.keys()), temp["mixture"].shape)
mus_tracks.append(temp)
print(len(mus_tracks))
# save the file to npy
np.save("musdb-32000fs.npy", mus_tracks)
# weight average will perform in the given folder
# It will output one model checkpoint, which avergas the weight of all models in the folder
def weight_average():
model_ckpt = []
model_files = os.listdir(config.wa_model_folder)
wa_ckpt = {
"state_dict": {}
}
for model_file in model_files:
model_file = os.path.join(config.esm_model_folder, model_file)
model_ckpt.append(torch.load(model_file, map_location="cpu")["state_dict"])
keys = model_ckpt[0].keys()
for key in keys:
model_ckpt_key = torch.cat([d[key].float().unsqueeze(0) for d in model_ckpt])
model_ckpt_key = torch.mean(model_ckpt_key, dim = 0)
assert model_ckpt_key.shape == model_ckpt[0][key].shape, "the shape is unmatched " + model_ckpt_key.shape + " " + model_ckpt[0][key].shape
wa_ckpt["state_dict"][key] = model_ckpt_key
torch.save(wa_ckpt, config.wa_model_path)
# use the model to quickly separate a track given a query
# it requires four variables in config.py:
# inference_file: the track you want to separate
# inference_query: a **folder** containing all samples from the same source
# test_key: ["name"] indicate the source name (just a name for final output, no other functions)
# wave_output_path: the output folder
# make sure the query folder contain the samples from the same source
# each time, the model is able to separate one source from the track
# if you want to separate multiple sources, you need to change the query folder or write a script to help you do that
def inference():
# set exp settings
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device("cuda")
assert config.test_key is not None, "there should be a separate key"
create_folder(config.wave_output_path)
test_track, fs = librosa.load(config.inference_file, sr = None)
test_track = test_track[:,None]
print(test_track.shape)
print(fs)
# convert the track into 32000 Hz sample rate
test_track = prepprocess_audio(
test_track,
fs, config.sample_rate,
config.test_type
)
test_tracks = []
temp = [test_track]
for dickey in config.test_key:
temp.append(test_track)
temp = np.array(temp)
test_tracks.append(temp)
dataset = MusdbDataset(tracks = test_tracks) # the action is similar to musdbdataset, reuse it
loader = DataLoader(
dataset = dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
# obtain the samples for query
queries = []
for query_file in os.listdir(config.inference_query):
f_path = os.path.join(config.inference_query, query_file)
if query_file.endswith(".wav"):
temp_q, fs = librosa.load(f_path, sr = None)
temp_q = temp_q[:, None]
temp_q = prepprocess_audio(
temp_q,
fs, config.sample_rate,
config.test_type
)
temp = [temp_q]
for dickey in config.test_key:
temp.append(temp_q)
temp = np.array(temp)
queries.append(temp)
assert config.resume_checkpoint is not None, "there should be a saved model when inferring"
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
gpus = 1
)
avg_at = None
# obtain the latent embedding as query
if config.infer_type == "mean":
avg_dataset = MusdbDataset(tracks = queries)
avg_loader = DataLoader(
dataset = avg_dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
at_wrapper = AutoTaggingWarpper(
at_model = at_model,
config = config,
target_keys = config.test_key
)
trainer.test(at_wrapper, test_dataloaders = avg_loader)
avg_at = at_wrapper.avg_at
# import seapration model
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
# resume checkpoint
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"], strict= False)
exp_model = SeparatorModel(
model = model,
config = config,
target_keys = config.test_key,
avg_at = avg_at,
using_wiener = False,
calc_sdr = False,
output_wav = True
)
trainer.test(exp_model, test_dataloaders = loader)
# test the separation model, mainly in musdb
def test():
# set exp settings
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device("cuda")
assert config.test_key is not None, "there should be a separate key"
create_folder(config.wave_output_path)
# use musdb as testset
test_data = np.load(config.testset_path, allow_pickle = True)
print(len(test_data))
mus_tracks = []
# in musdb, all fs is the same (44100)
# load the dataset
for track in test_data:
temp = []
mixture = track["mixture"]
temp.append(mixture)
for dickey in config.test_key:
source = track[dickey]
temp.append(source)
temp = np.array(temp)
print(temp.shape)
mus_tracks.append(temp)
print(len(mus_tracks))
dataset = MusdbDataset(tracks = mus_tracks)
loader = DataLoader(
dataset = dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
assert config.resume_checkpoint is not None, "there should be a saved model when inferring"
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
gpus = 1
)
avg_at = None
# obtain the query of four stems from the training set
if config.infer_type == "mean":
avg_data = np.load(config.testavg_path, allow_pickle = True)[:90]
print(len(avg_data))
avgmus_tracks = []
# in musdb, all fs is the same (44100)
# load the dataset
for track in avg_data:
temp = []
mixture = track["mixture"]
temp.append(mixture)
for dickey in config.test_key:
source = track[dickey]
temp.append(source)
temp = np.array(temp)
print(temp.shape)
avgmus_tracks.append(temp)
print(len(avgmus_tracks))
avg_dataset = MusdbDataset(tracks = avgmus_tracks)
avg_loader = DataLoader(
dataset = avg_dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
at_wrapper = AutoTaggingWarpper(
at_model = at_model,
config = config,
target_keys = config.test_key
)
trainer.test(at_wrapper, test_dataloaders = avg_loader)
avg_at = at_wrapper.avg_at
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"], strict= False)
exp_model = SeparatorModel(
model = model,
config = config,
target_keys = config.test_key,
avg_at = avg_at,
using_wiener = config.using_wiener
)
trainer.test(exp_model, test_dataloaders = loader)
def train():
# set exp settings
# device_name = "cuda" if torch.cuda.is_available() else "cpu"
# device = torch.device("cuda")
device_num = torch.cuda.device_count()
print("each batch size:", config.batch_size // device_num)
train_index_path = os.path.join(config.dataset_path, "hdf5s","indexes", config.index_type + ".h5")
train_idc = np.load(os.path.join(config.idc_path, config.index_type + "_idc.npy"), allow_pickle = True)
eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5")
eval_idc = np.load(os.path.join(config.idc_path, "eval_idc.npy"), allow_pickle = True)
# set exp folder
exp_dir = os.path.join(config.workspace, "results", config.exp_name)
checkpoint_dir = os.path.join(config.workspace, "results", config.exp_name, "checkpoint")
if not config.debug:
create_folder(os.path.join(config.workspace, "results"))
create_folder(exp_dir)
create_folder(checkpoint_dir)
dump_config(config, os.path.join(exp_dir, config.exp_name), False)
# load data
# import dataset LGSPDataset (latent general source separation) and sampler
dataset = LGSPDataset(
index_path = train_index_path,
idc = train_idc,
config = config,
factor = 0.05,
eval_mode = False
)
eval_dataset = LGSPDataset(
index_path = eval_index_path,
idc = eval_idc,
config = config,
factor = 0.05,
eval_mode = True
)
audioset_data = data_prep(train_dataset=dataset,eval_dataset=eval_dataset,device_num=device_num, config=config)
checkpoint_callback = ModelCheckpoint(
monitor = "mixture_sdr",
filename='l-{epoch:d}-{mixture_sdr:.3f}-{clean_sdr:.3f}-{silence_sdr:.3f}',
save_top_k = 10,
mode = "max"
)
# infer at model
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
# load the checkpoint
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
deterministic=True,
default_root_dir = checkpoint_dir,
gpus = device_num,
val_check_interval = 0.2,
# check_val_every_n_epoch = 1,
max_epochs = config.max_epoch,
auto_lr_find = True,
sync_batchnorm = True,
callbacks = [checkpoint_callback],
accelerator = "ddp" if device_num > 1 else None,
resume_from_checkpoint = None, #config.resume_checkpoint,
replace_sampler_ddp = False,
gradient_clip_val=1.0,
num_sanity_val_steps = 0,
)
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
if config.resume_checkpoint is not None:
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"])
# trainer.test(model, datamodule = audioset_data)
trainer.fit(model, audioset_data)
def main():
parser = argparse.ArgumentParser(description="latent genreal source separation parser")
subparsers = parser.add_subparsers(dest = "mode")
parser_train = subparsers.add_parser("train")
parser_test = subparsers.add_parser("test")
parser_musdb = subparsers.add_parser("musdb_process")
parser_saveidc = subparsers.add_parser("save_idc")
parser_wa = subparsers.add_parser("weight_average")
parser_infer = subparsers.add_parser("inference")
args = parser.parse_args()
# default settings
logging.basicConfig(level=logging.INFO)
pl.utilities.seed.seed_everything(seed = config.random_seed)
if args.mode == "train":
train()
elif args.mode == "test":
test()
elif args.mode == "musdb_process":
process_musdb()
elif args.mode == "weight_average":
weight_average()
elif args.mode == "save_idc":
save_idc()
elif args.mode == "inference":
inference()
else:
raise Exception("Error Mode!")
if __name__ == '__main__':
main()