-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutils.py
580 lines (497 loc) · 19.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Ke Chen
# knutchen@ucsd.edu
# Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data
# Some Common Methods
import numpy as np
from scipy.signal import butter, filtfilt
import torch
import torch.nn as nn
from torch import Tensor
from typing import Optional
import logging
import os
import sys
import h5py
import csv
import time
import json
import museval
import librosa
from datetime import datetime
def create_folder(fd):
if not os.path.exists(fd):
os.makedirs(fd)
def get_filename(path):
path = os.path.realpath(path)
na_ext = path.split('/')[-1]
na = os.path.splitext(na_ext)[0]
return na
def get_sub_filepaths(folder):
paths = []
for root, dirs, files in os.walk(folder):
for name in files:
path = os.path.join(root, name)
paths.append(path)
return paths
def np_to_pytorch(x, device = None):
if 'float' in str(x.dtype):
x = torch.Tensor(x)
elif 'int' in str(x.dtype):
x = torch.LongTensor(x)
else:
return x
return x.to(device)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def calculate_average_energy(x):
return np.mean(np.square(x))
def id_to_one_hot(id, classes_num):
one_hot = np.zeros(classes_num)
one_hot[id] = 1
return one_hot
def ids_to_hots(ids, classes_num):
hots = np.zeros(classes_num)
for id in ids:
hots[id] = 1
return hots
def float32_to_int16(x):
assert np.max(np.abs(x)) <= 1.
return (x * 32767.).astype(np.int16)
def int16_to_float32(x):
return (x / 32767.).astype(np.float32)
def collect_fn(list_data_dict):
np_data_dict = {}
for key in list_data_dict[0].keys():
np_data_dict[key] = np.array([data_dict[key] for data_dict in list_data_dict])
return np_data_dict
def dump_config(config, filename, include_time = False):
save_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
config_json = {}
for key in dir(config):
if not key.startswith("_"):
config_json[key] = eval("config." + key)
if include_time:
filename = filename + "_" + save_time
with open(filename + ".json", "w") as f:
json.dump(config_json, f ,indent=4)
def get_segment_bgn_end_samples(anchor_index, segment_frames, hop_samples, clip_samples):
bgn_frame = anchor_index - segment_frames // 2
end_frame = anchor_index + segment_frames // 2
bgn_sample = bgn_frame * hop_samples
end_sample = end_frame * hop_samples
segment_samples = segment_frames * hop_samples
if bgn_sample < 0:
bgn_sample = 0
end_sample = segment_samples
if end_sample > clip_samples:
bgn_sample = clip_samples - segment_samples
end_sample = clip_samples
return bgn_sample, end_sample
def get_mix_data(waveforms, con_vectors, class_ids, indexes, mix_type = "mixture"):
# define return data
mixtures = []
sources = []
conditions = []
gds = []
for i in range(0, len(indexes), 2):
n1 = indexes[i]
n2 = indexes[i + 1]
# energy normalization
e1 = np.mean(np.square(waveforms[n1]))
e2 = np.mean(np.square(waveforms[n2]))
ratio = (e1 / max(1e-8, e2)) ** 0.5
ratio = np.clip(ratio, 0.02, 50)
waveforms[n2] *= ratio
mixture = waveforms[n1] + waveforms[n2]
# form data
if mix_type == "clean":
mixtures.append(waveforms[n1])
mixtures.append(waveforms[n2])
sources.append(waveforms[n1])
sources.append(waveforms[n2])
elif mix_type == "silence":
mixtures.append(waveforms[n2])
mixtures.append(waveforms[n1])
sources.append(np.zeros_like(waveforms[n1]))
sources.append(np.zeros_like(waveforms[n2]))
else:
mixtures.append(mixture)
mixtures.append(mixture)
sources.append(waveforms[n1])
sources.append(waveforms[n2])
conditions.append(con_vectors[n1])
conditions.append(con_vectors[n2])
gds.append(class_ids[n1])
gds.append(class_ids[n2])
return mixtures, sources, conditions, gds
# generate a list
def get_balanced_class_list(index_path, factor = 3, black_list = None, random_seed = 0):
# initialization
random_state = np.random.RandomState(random_seed)
logging.info("Load Indexes...............")
with h5py.File(index_path, "r") as hf:
indexes = hf["index_in_hdf5"][:]
targets = hf["target"][:].astype(np.float32)
(audios_num, classes_num) = targets.shape
# set the indexes per class for balanced list
indexes_per_class = []
for k in range(classes_num):
indexes_per_class.append(
np.where(targets[:, k] == 1)[0]
)
logging.info("Load Indexes Succeed...............")
return indexes_per_class
def dataset_worker_init_fn_seed(worker_id):
seed = np.random.randint(0, 224141) + worker_id * np.random.randint(100,1000)
print(seed)
np.random.seed(seed)
def calculate_sdr(ref, est, scaling=False):
s = museval.evaluate(ref[None,:,None], est[None,:,None], win = len(ref), hop = len(ref))
return s[0][0]
def butter_lowpass_filter(data, cuton, cutoff, fs, order):
normal_cutoff = cutoff / (0.5 * fs)
normal_cuton = cuton / (0.5 * fs)
b, a = butter(order, [normal_cuton, normal_cutoff], btype="band", analog=False)
y = filtfilt(b,a, data)
return y
def calculate_silence_sdr(mixture, est):
sdr = 10. * (
np.log10(np.clip(np.mean(mixture ** 2), 1e-8, np.inf)) \
- np.log10(np.clip(np.mean(est ** 2), 1e-8, np.inf)))
return sdr
def evaluate_sdr(ref, est, class_ids, mix_type = "mixture"):
sdr_results = []
if mix_type == "silence":
for i in range(len(ref)):
sdr = calculate_silence_sdr(ref[i,:,0], est[i,:,0])
sdr_results.append([sdr, class_ids[i]])
else:
for i in range(len(ref)):
if np.sum(ref[i,:,0]) == 0 or np.sum(est[i,:,0]) == 0:
continue
else:
sdr_c = calculate_sdr(ref[i,:,0], est[i,:,0], scaling = True)
sdr_results.append([sdr_c, class_ids[i]])
return sdr_results
# set the audio into the format that can be fed into the model
# resample -> convert to mono -> output the audio
# track [n_sample, n_channel]
def prepprocess_audio(track, ofs, rfs, mono_type = "mix"):
if track.shape[-1] > 1:
# stereo
if mono_type == "mix":
track = np.transpose(track, (1,0))
track = librosa.to_mono(track)
elif mono_type == "left":
track = track[:, 0]
elif mono_type == "right":
track = track[:, 1]
else:
track = track[:, 0]
# track [n_sample]
if ofs != rfs:
track = librosa.resample(track, ofs, rfs)
return track
# *************************************************
# all below is referred from the wiener filter code
def atan2(y, x):
r"""Element-wise arctangent function of y/x.
Returns a new tensor with signed angles in radians.
It is an alternative implementation of torch.atan2
Args:
y (Tensor): First input tensor
x (Tensor): Second input tensor [shape=y.shape]
Returns:
Tensor: [shape=y.shape].
"""
pi = 2 * torch.asin(torch.tensor(1.0))
x += ((x == 0) & (y == 0)) * 1.0
out = torch.atan(y / x)
out += ((y >= 0) & (x < 0)) * pi
out -= ((y < 0) & (x < 0)) * pi
out *= 1 - ((y > 0) & (x == 0)) * 1.0
out += ((y > 0) & (x == 0)) * (pi / 2)
out *= 1 - ((y < 0) & (x == 0)) * 1.0
out += ((y < 0) & (x == 0)) * (-pi / 2)
return out
# Define basic complex operations on torch.Tensor objects whose last dimension
# consists in the concatenation of the real and imaginary parts.
def _norm(x: torch.Tensor) -> torch.Tensor:
r"""Computes the norm value of a torch Tensor, assuming that it
comes as real and imaginary part in its last dimension.
Args:
x (Tensor): Input Tensor of shape [shape=(..., 2)]
Returns:
Tensor: shape as x excluding the last dimension.
"""
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplication of two complex Tensors described
through their real and imaginary parts.
The result is added to the `out` tensor"""
# check `out` and allocate it if needed
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape:
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0])
else:
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1])
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0])
return out
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplication of two complex Tensors described
through their real and imaginary parts
can work in place in case out is a only"""
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
if out is None or out.shape != target_shape:
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
if out is a:
real_a = a[..., 0]
out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0]
else:
out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]
out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]
return out
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise multiplicative inverse of a Tensor with complex
entries described through their real and imaginary parts.
can work in place in case out is z"""
ez = _norm(z)
if out is None or out.shape != z.shape:
out = torch.zeros_like(z)
out[..., 0] = z[..., 0] / ez
out[..., 1] = -z[..., 1] / ez
return out
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Element-wise complex conjugate of a Tensor with complex entries
described through their real and imaginary parts.
can work in place in case out is z"""
if out is None or out.shape != z.shape:
out = torch.zeros_like(z)
out[..., 0] = z[..., 0]
out[..., 1] = -z[..., 1]
return out
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Invert 1x1 or 2x2 matrices
Will generate errors if the matrices are singular: user must handle this
through his own regularization schemes.
Args:
M (Tensor): [shape=(..., nb_channels, nb_channels, 2)]
matrices to invert: must be square along dimensions -3 and -2
Returns:
invM (Tensor): [shape=M.shape]
inverses of M
"""
nb_channels = M.shape[-2]
if out is None or out.shape != M.shape:
out = torch.empty_like(M)
if nb_channels == 1:
# scalar case
out = _inv(M, out)
elif nb_channels == 2:
# two channels case: analytical expression
# first compute the determinent
det = _mul(M[..., 0, 0, :], M[..., 1, 1, :])
det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :])
# invert it
invDet = _inv(det)
# then fill out the matrix with the inverse
out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :])
out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :])
out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :])
out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :])
else:
raise Exception("Only 2 channels are supported for the torch version.")
return out
def expectation_maximization(
y: torch.Tensor,
x: torch.Tensor,
iterations: int = 2,
eps: float = 1e-10,
batch_size: int = 200,
):
r"""Expectation maximization algorithm, for refining source separation
estimates.
Args:
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
initial estimates for the sources
x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)]
complex STFT of the mixture signal
iterations (int): [scalar]
number of iterations for the EM algorithm.
eps (float or None): [scalar]
The epsilon value to use for regularization and filters.
Returns:
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
estimated sources after iterations
v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)]
estimated power spectral densities
R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)]
estimated spatial covariance matrices
"""
# dimensions
(nb_frames, nb_bins, nb_channels) = x.shape[:-1]
nb_sources = y.shape[-1]
regularization = torch.cat(
(
torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None],
torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device),
),
dim=2,
)
regularization = torch.sqrt(torch.as_tensor(eps)) * (
regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1))
)
# allocate the spatial covariance matrices
R = [
torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device)
for j in range(nb_sources)
]
weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device)
v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device)
for it in range(iterations):
# constructing the mixture covariance matrix. Doing it with a loop
# to avoid storing anytime in RAM the whole 6D tensor
# update the PSD as the average spectrogram over channels
v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2)
# update spatial covariance matrices (weighted update)
for j in range(nb_sources):
R[j] = torch.tensor(0.0, device=x.device)
weight = torch.tensor(eps, device=x.device)
pos: int = 0
batch_size = batch_size if batch_size else nb_frames
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0)
weight = weight + torch.sum(v[t, ..., j], dim=0)
R[j] = R[j] / weight[..., None, None, None]
weight = torch.zeros_like(weight)
# cloning y if we track gradient, because we're going to update it
if y.requires_grad:
y = y.clone()
pos = 0
while pos < nb_frames:
t = torch.arange(pos, min(nb_frames, pos + batch_size))
pos = int(t[-1]) + 1
y[t, ...] = torch.tensor(0.0, device=x.device)
# compute mix covariance matrix
Cxx = regularization
for j in range(nb_sources):
Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone())
# invert it
inv_Cxx = _invert(Cxx)
# separate the sources
for j in range(nb_sources):
# create a wiener gain for this source
gain = torch.zeros_like(inv_Cxx)
# computes multichannel Wiener gain as v_j R_j inv_Cxx
indices = torch.cartesian_prod(
torch.arange(nb_channels),
torch.arange(nb_channels),
torch.arange(nb_channels),
)
for index in indices:
gain[:, :, index[0], index[1], :] = _mul_add(
R[j][None, :, index[0], index[2], :].clone(),
inv_Cxx[:, :, index[2], index[1], :],
gain[:, :, index[0], index[1], :],
)
gain = gain * v[t, ..., None, None, None, j]
# apply it to the mixture
for i in range(nb_channels):
y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j])
return y, v, R
def _covariance(y_j):
"""
Compute the empirical covariance for a source.
Args:
y_j (Tensor): complex stft of the source.
[shape=(nb_frames, nb_bins, nb_channels, 2)].
Returns:
Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)]
just y_j * conj(y_j.T): empirical covariance for each TF bin.
"""
(nb_frames, nb_bins, nb_channels) = y_j.shape[:-1]
Cj = torch.zeros(
(nb_frames, nb_bins, nb_channels, nb_channels, 2),
dtype=y_j.dtype,
device=y_j.device,
)
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels))
for index in indices:
Cj[:, :, index[0], index[1], :] = _mul_add(
y_j[:, :, index[0], :],
_conj(y_j[:, :, index[1], :]),
Cj[:, :, index[0], index[1], :],
)
return Cj
def wiener(
targets_spectrograms: torch.Tensor,
mix_stft: torch.Tensor,
iterations: int = 1,
softmask: bool = False,
residual: bool = False,
scale_factor: float = 10.0,
eps: float = 1e-10,
):
"""Wiener-based separation for multichannel audio.
Returns:
Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources)
STFT of estimated sources
"""
if softmask:
# if we use softmask, we compute the ratio mask for all targets and
# multiply by the mix stft
y = (
mix_stft[..., None]
* (
targets_spectrograms
/ (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype))
)[..., None, :]
)
else:
# otherwise, we just multiply the targets spectrograms with mix phase
# we tacitly assume that we have magnitude estimates.
angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None]
nb_sources = targets_spectrograms.shape[-1]
y = torch.zeros(
mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device
)
y[..., 0, :] = targets_spectrograms * torch.cos(angle)
y[..., 1, :] = targets_spectrograms * torch.sin(angle)
if residual:
# if required, adding an additional target as the mix minus
# available targets
y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1)
if iterations == 0:
return y
# we need to refine the estimates. Scales down the estimates for
# numerical stability
max_abs = torch.max(
torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device),
torch.sqrt(_norm(mix_stft)).max() / scale_factor,
)
mix_stft = mix_stft / max_abs
y = y / max_abs
# call expectation maximization
y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0]
# scale estimates up again
y = y * max_abs
return y
def split_nparray_with_overlap(array, array_size, overlap_size):
result = []
element_size = int(len(array) / array_size)
for i in range(array_size):
offset = int(i * element_size)
last_loop = i == array_size
chunk = array[offset : offset + element_size + (0 if last_loop else overlap_size)]
chunk = chunk.copy()
chunk.resize(element_size + overlap_size, refcheck = False)
result.append(chunk)
return np.array(result)