-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathcoco.py
175 lines (169 loc) · 10.4 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
'''
Function:
Implementation of COCOVOCSUBDataset, COCOStuff10kDataset and COCOStuffDataset
Author:
Zhenchao Jin
'''
import os
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from .base import BaseDataset
'''COCOVOCSUBDataset'''
class COCOVOCSUBDataset(BaseDataset):
num_classes = 21
classnames = [
'__background__', 'airplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car',
'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorcycle', 'person',
'potted-plant', 'sheep', 'sofa', 'train', 'tv'
]
palette = [
(0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128), (128, 128, 128), (64, 0, 0),
(192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128), (0, 64, 0),
(128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)
]
valid_clsids = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72]
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(COCOVOCSUBDataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
from pycocotools import mask
from pycocotools.coco import COCO
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, f"{dataset_cfg['set']}2017")
# obatin imageids
self.annfilepath = os.path.join(rootdir, f"annotations/instances_{dataset_cfg['set']}2017.json")
self.coco_api = COCO(self.annfilepath)
self.cocomask_api = mask
self.imageids = []
imageids_bar = tqdm(list(self.coco_api.imgs.keys()))
for imageid in imageids_bar:
imageids_bar.set_description('Preprocess imageid %s' % imageid)
target = self.coco_api.loadAnns(self.coco_api.getAnnIds(imgIds=imageid))
image_meta = self.coco_api.loadImgs(imageid)[0]
seg_target = self.getsegtarget(target, image_meta['height'], image_meta['width'])
if (seg_target > 0).sum() > 1000:
self.imageids.append(imageid)
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
image_meta = self.coco_api.loadImgs(imageid)[0]
imagepath = os.path.join(self.image_dir, image_meta['file_name'])
# read image
image = cv2.imread(imagepath)
# read annotation
seg_target = self.coco_api.loadAnns(self.coco_api.getAnnIds(imgIds=imageid))
seg_target = self.getsegtarget(seg_target, image_meta['height'], image_meta['width'])
# construct sample_meta
sample_meta = {'image': image, 'seg_target': seg_target, 'width': image.shape[1], 'height': image.shape[0]}
sample_meta.update({'id': str(imageid)})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta
'''getsegtarget'''
def getsegtarget(self, target, height, width):
segmentation = np.zeros((height, width), dtype=np.uint8)
for instance in target:
rle = self.cocomask_api.frPyObjects(instance['segmentation'], height, width)
mask = self.cocomask_api.decode(rle)
clsid = instance['category_id']
if clsid not in self.valid_clsids: continue
label = self.valid_clsids.index(clsid)
if len(mask.shape) < 3: segmentation[:, :] += (segmentation == 0) * (mask * label)
else: segmentation[:, :] += (segmentation == 0) * ((np.sum(mask, axis=2) > 0) * label).astype(np.uint8)
return segmentation
'''COCOStuff10kDataset'''
class COCOStuff10kDataset(BaseDataset):
num_classes = 182
classnames = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'street sign', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'hat', 'backpack', 'umbrella', 'shoe', 'eye glasses', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'plate', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'mirror', 'dining table', 'window', 'desk', 'toilet', 'door', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
'blender', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'hair brush', 'banner',
'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet', 'ceiling-other',
'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff',
'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', 'fog', 'food-other',
'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal',
'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper', 'pavement', 'pillow', 'plant-other', 'plastic',
'platform', 'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', 'rug', 'salad', 'sand', 'sea',
'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', 'table',
'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel',
'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other', 'wood'
]
palette = BaseDataset.randompalette(num_classes)
clsid2label = {0: 255}
for i in range(1, num_classes+1): clsid2label[i] = i - 1
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(COCOStuff10kDataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, 'images')
self.ann_dir = os.path.join(rootdir, 'annotations')
# obatin imageids
df = pd.read_csv(os.path.join(rootdir, 'imageLists', dataset_cfg['set']+'.txt'), names=['imageids'])
self.imageids = df['imageids'].values
self.imageids = [str(_id) for _id in self.imageids]
self.ann_ext = '.mat'
self.image_ext = '.jpg'
'''COCOStuffDataset'''
class COCOStuffDataset(BaseDataset):
num_classes = 182
classnames = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'street sign', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'hat', 'backpack', 'umbrella', 'shoe', 'eye glasses', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'plate', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'mirror', 'dining table', 'window', 'desk', 'toilet', 'door', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
'blender', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'hair brush', 'banner',
'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet', 'ceiling-other',
'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff',
'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', 'fog', 'food-other',
'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal',
'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper', 'pavement', 'pillow', 'plant-other', 'plastic',
'platform', 'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', 'rug', 'salad', 'sand', 'sea',
'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', 'table',
'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel',
'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other', 'wood'
]
palette = BaseDataset.randompalette(num_classes)
clsid2label = {0: 255}
for i in range(1, num_classes+1): clsid2label[i] = i - 1
assert num_classes == len(classnames) and num_classes == len(palette)
def __init__(self, mode, logger_handle, dataset_cfg):
super(COCOStuffDataset, self).__init__(mode=mode, logger_handle=logger_handle, dataset_cfg=dataset_cfg)
from pycocotools import mask
from pycocotools.coco import COCO
# obtain the dirs
rootdir = dataset_cfg['rootdir']
self.image_dir = os.path.join(rootdir, f"{dataset_cfg['set']}2017")
# obatin imageids
self.annfilepath = os.path.join(rootdir, f"annotations/stuff_{dataset_cfg['set']}2017.json")
self.coco_api = COCO(self.annfilepath)
self.imageids = list(self.coco_api.imgs.keys())
'''getitem'''
def __getitem__(self, index):
# imageid
imageid = self.imageids[index % len(self.imageids)]
# read sample_meta
image_meta = self.coco_api.loadImgs(imageid)[0]
imagepath = os.path.join(self.image_dir, image_meta['file_name'])
annpath = imagepath.replace('jpg', 'png')
sample_meta = self.read(imagepath, annpath)
# add image id
sample_meta.update({'id': str(imageid)})
# synctransforms
sample_meta = self.synctransforms(sample_meta)
# return
return sample_meta