-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCode.py
113 lines (83 loc) · 2.89 KB
/
Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
## Machine Learning project for Driver Drowsiness Detection using python.
#driver drowsiness detection system using python, opencv, dlib
#importing required libraries.
import cv2
#numpy for array related functins
import numpy as np
import dlib
#face utils for basic operations of conversion
from imutils import face_utils
#initialize the camera and taking the instance
cap = cv2.VideoCapture(0)
#initializing the face detector and landmark detector
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#status marking for current state
sleep = 0
drowsy = 0
active = 0
status = ""
color = (0,0,0)
#Defining a function in python
def compute( ptA, ptB ):
dist = np.linalg.norm(ptA - ptB)
return dist
def blinked(a, b, c, d, e, f):
up = compute(b,d) + compute(c,e)
down = compute(a,f)
ratio = up/(2.0*down)
#checking if it is blinked with predefined values
if( ratio > 0.25 ):
return 2
elif( ratio > 0.21 and ratio <= 0.25 ):
return 1
else:
return 0
while True:
frame = cap.read()
#Converting image to greyscale
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = detector(gray)
for face in faces:
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
face_frame = frame.copy()
cv2.rectangle(face_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
landmarks = predictor(gray,face)
landmarks = face_utils.shape_to_np(landmarks)
#numbers are actually the landmarks which will show eye
left_blink = blinked(landmarks[36], landmarks[37], landmarks[38], landmarks[41], landmarks[40], landmarks[39])
right_blink = blinked(landmarks[42], landmarks[43], landmarks[44], landmarks[47], landmarks[46], landmarks[45])
#now judge what to do for the eye blinks
if( left_blink == 0 or right_blink == 0 ):
sleep += 1
drowsy = 0
active = 0
if( sleep > 6 ):
status = "SLEEPING !!!"
color = (255, 0, 0)
elif( left_blink == 1 or right_blink == 1):
sleep = 0
active = 0
drowsy += 1
if( drowsy > 6 ):
status = "Drowsy !!"
color = (0, 0, 255)
else:
drowsy = 0
sleep = 0
active += 1
if( active > 6 ):
status = "active :)"
color = (0, 255, 0)
cv2.putText(frame, status, (100, 100), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 1.2, color, 3)
for n in range(0, 68):
(x, y) = landmarks[n]
cv2.circle(face_frame, (x, y), 1, (0, 255, 0), -1)
cv2.imshow("frame", frame)
cv2.imshow("Result of detector", face_frame)
key = cv2.waitKey(1)
if (key==27):
break