很多情况下,我们需要对一组数据进行处理,处理不同特征的元素
就像电脑处理不同的程序一样,需要为每个元素进行优先级划分,总是处理优先级高的元素或是程序
是基于队列先进先出 特性的改变
- 最大优先队列,无论入队顺序,当前优先级最大的元素优先出队
- 最小优先队列,无论入队顺序,当前优先级最小的元素优先出队
而这样的数据结构应该支持:
- 删除最大元素(优先级最高先执行)
- 插入元素(优先级高的可以进行“插队”)
一些应用场景:
- 模拟系统:按照时间顺序处理事件
- 任务调度:键值的优先级决定了应该首先执行哪些任务
- 数值计算
优先队列可以通过简单的数组,链表,堆来实现
Sort
├─ UnorderedArrayTopM.java // 通过无序数组实现
├─ OrderedArrayTopM.java // 通过有序数组实现
├─ TopM.java // 优先队列实例代码
├─ MaxPQ.java // 通过堆实现最大优先队列
利用线性数据结构可以实现,但是时间复杂度较高,最坏时间复杂度O(n),并不是最理想的方式
package Sort;
import static Sort.SortExample.exch;
import static Sort.SortExample.less;
// 通过无序数组实现优先队列
public class UnorderedArrayTopM<Key extends Comparable<Key>> {
Key[] pq; // elements
int n; // number of elements
// set inititial size of heap to hold size elements
// 设置堆的初始大小以容纳大小元素
public UnorderedArrayTopM(int capacity) {
pq = (Key[]) new Comparable[capacity];
n = 0;
}
public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public void insert(Key x) { pq[n++] = x; }
public Key delMax() {
int max = 0;
for (int i = 1; i < n; i++) // for循环找到最大元素
if (less(max, i)) max = i;
exch(pq, max, n-1);
return pq[--n];
}
}
package Sort;
import static Sort.SortExample.less;
// 通过有序数组实现优先队列
public class OrderedArrayTopM<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements
// set inititial size of heap to hold size elements
public OrderedArrayTopM(int capacity) {
pq = (Key[]) (new Comparable[capacity]);
n = 0;
}
public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }
public void insert(Key key) {
int i = n-1;
// 从后往前遍历 直到有元素不小于插入元素key
while (i >= 0 && less(key, pq[i])) {
pq[i+1] = pq[i]; // 向后移
i--;
}
pq[i+1] = key; // 插入
n++; // 元素个数加一
}
}
package Sort;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
import static Sort.SortExample.less;
// 通过堆实现优先队列
public class MaxPQ<Key> implements Iterable<Key> {
private Key[] pq; // 将元素存储在 1 到 n 之间 0处不传值
private int n; // 节点的数量
private Comparator<Key> comparator; // optional comparator
// 传入数组的
public MaxPQ(int initCapacity) {
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
public MaxPQ() {
this(1);
}
public MaxPQ(int initCapacity, Comparator<Key> comparator) {
this.comparator = comparator;
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
public MaxPQ(Comparator<Key> comparator) {
this(1, comparator);
}
// 将传入数组复制到 pq数组中
public MaxPQ(Key[] keys) {
n = keys.length;
pq = (Key[]) new Object[keys.length + 1];
for (int i = 0; i < n; i++)
pq[i+1] = keys[i];
for (int k = n/2; k >= 1; k--)
sink(k);
assert isMaxHeap();
}
public boolean isEmpty() {
return n == 0;
}
public int size() {
return n;
}
// 返回最大值
public Key max() {
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
// 实现动态内存
private void resize(int capacity) {
assert capacity > n;
Key[] temp = (Key[]) new Object[capacity];
for (int i = 1; i <= n; i++) {
temp[i] = pq[i];
}
pq = temp;
}
// 插入
public void insert(Key x) {
// double size of array if necessary
if (n == pq.length - 1) resize(2 * pq.length);
// add x, and percolate it up to maintain heap invariant
pq[++n] = x;
swim(n);
assert isMaxHeap();
}
// 删除最大值
public Key delMax() {
if (isEmpty())
throw new NoSuchElementException("Priority queue underflow");
Key max = pq[1]; // 得到最大元素
exch(1, n--); // 将其和最后一个节点交换
sink(1); // 恢复堆的有序性
pq[n+1] = null; // 防止对象游离
if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
assert isMaxHeap();
return max;
}
// 上升操作
private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(k, k/2);
k = k/2;
}
}
// 下沉操作
private void sink(int k) {
while (2*k <= n) {
int j = 2*k;
if (j < n && less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k = j;
}
}
// 元素交换操作
private void exch(int i, int j) {
Key swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
}
// 判断是否是满堆
private boolean isMaxHeap() {
for (int i = 1; i <= n; i++) {
if (pq[i] == null) return false;
}
for (int i = n+1; i < pq.length; i++) {
if (pq[i] != null) return false;
}
if (pq[0] != null) return false;
return isMaxHeapOrdered(1);
}
// 是否是一个最大堆
private boolean isMaxHeapOrdered(int k) {
if (k > n) return true;
int left = 2*k;
int right = 2*k + 1;
if (left <= n && less(k, left)) return false;
if (right <= n && less(k, right)) return false;
return isMaxHeapOrdered(left) && isMaxHeapOrdered(right);
}
public Iterator<Key> iterator() {
return new HeapIterator();
}
private class HeapIterator implements Iterator<Key> {
// create a new pq
private MaxPQ<Key> copy;
// add all items to copy of heap
// takes linear time since already in heap order so no keys move
public HeapIterator() {
if (comparator == null) copy = new MaxPQ<Key>(size());
else copy = new MaxPQ<Key>(size(), comparator);
for (int i = 1; i <= n; i++)
copy.insert(pq[i]);
}
public boolean hasNext() { return !copy.isEmpty(); }
public void remove() { throw new UnsupportedOperationException(); }
public Key next() {
if (!hasNext()) throw new NoSuchElementException();
return copy.delMax();
}
}
}
数据来源:algo4 官方提供的 algo4-data.zip 数据包
无序数组实现的优先队列, 添加32000个数据,执行时间为:9.892E-4 s
无序数组实现的优先队列, 删除最大元素,执行时间为:0.0076753 s
有序数组实现的优先队列, 添加32000个数据,执行时间为:2.0337085 s
有序数组实现的优先队列, 删除最大元素,执行时间为:3.0E-7 s
基于堆实现的优先队列, 添加32000个数据,执行时间为:0.0067983 s
基于堆实现的优先队列, 删除最大元素,执行时间为:2.63E-5 s