-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHelper.py
233 lines (173 loc) · 12.6 KB
/
Helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')
column_transform_dict = {'LNR':'id', 'AGER_TYP':'age_type', 'ALTER_HH':'age_HH', 'ALTERSKATEGORIE_GROB':'age_prename',
'ANZ_HAUSHALTE_AKTIV':'count_household_building','ANZ_HH_TITEL':'count_academic_holder_building',
'ANZ_PERSONEN':'count_adult_house','ANREDE_KZ':'sex','ANZ_TITEL':'count_professional_HH',
'ARBEIT':'share_unemployed_community','BALLRAUM':'distance_metropole','CAMEO_DEUG_2015':'income_class',
'CAMEO_DEU_2015':'income_class_detailed','CAMEO_INTL_2015':'international_class',
'D19_BANKEN_ANZ_12':'bank_activity_12', 'D19_BANKEN_ANZ_24':'bank_activity_24','D19_BANKEN_DATUM':'bank_last_trans',
'D19_BANKEN_DIREKT':'bank_activity_DIRECT_BANKS', 'D19_BANKEN_GROSS':'bank_activity_BIG_BANK', 'D19_BANKEN_LOKAL':'bank_activity_LOCAL_BANK',
'D19_BANKEN_OFFLINE_DATUM':'segment_bank_last_trans_offline','D19_BANKEN_ONLINE_DATUM':'segment_bank_last_trans_online',
'D19_BANKEN_ONLINE_QUOTE_12':'percent_online_trans_segment_bank','D19_BANKEN_REST':'trans_FURTHER_BANKS',
'D19_BEKLEIDUNG_GEH':'trasn_CLOTHING_LUX','D19_BEKLEIDUNG_REST':'trasn_CLOTHING_FURTHER','D19_BILDUNG':'trans_EDUCATION',
'D19_BIO_OEKO':'trans_ECOLOGI','D19_BUCH_CD':'trans_BOOKSCD','D19_DIGIT_SERV':'trans_DIGITAL','D19_DROGERIEARTIKEL':'trans_DRUGSTORE',
'D19_ENERGIE':'trans_ENERGY','D19_FREIZEIT':'trans_LEISURE','D19_GARTEN':'trans_GARDEN','D19_GESAMT_ANZ_12':'trans_TOTAL_12',
'D19_GESAMT_ANZ_24':'trans_TOTAL_24','D19_GESAMT_DATUM':'trans_last_OVERALL','D19_GESAMT_ONLINE_DATUM':'trans_last_ONLINE',
'D19_GESAMT_OFFLINE_DATUM':'trans_last_OFFLINE','D19_GESAMT_ONLINE_QUOTE_12':'trans_pre_ONLINE_12','D19_HANDWERK':'TP_DOYOURSELF',
'D19_HAUS_DEKO':'TP_DECORATION','D19_KINDERARTIKEL':'TP_CHILD','D19_KONSUMTYP':'consumption_type','D19_KONSUMTYP_MAX':'consumption_type_MAX',
'D19_KOSMETIK':'TP_COSMATIC','D19_LEBENSMITTEL':'TP_FOOD','D19_LOTTO':'TP_lotto','D19_NAHRUNGSERGAENZUNG':'TP_DIETARY',
'D19_RATGEBER':'TP_GUIDEBOOK','D19_REISEN':'tran_prod_TRAVEL','D19_SAMMELARTIKEL':'TP_COLLLECTABLE','D19_SCHUHE':'TP_SHOES',
'D19_SONSTIGE':'TP_OTHER','D19_TECHNIK':'TP_TECH','D19_TELKO_ANZ_12':'TP_TELECOM_12','D19_TELKO_ANZ_24':'TP_TELECOM_24',
'D19_TELKO_DATUM':'TP_TELECOM_TOTAL','D19_TELKO_MOBILE':'TP_TELECOM_MOBILE','D19_TELKO_OFFLINE_DATUM':'TP_last_TELECOM_OFFLINE',
'D19_TELKO_ONLINE_DATUM':'TP_last_TELECOM_ONLINE','D19_TELKO_ONLINE_QUOTE_12':'TP_last_TELECOM_ONLINE_12',
'D19_TELKO_REST':'TP_last_FURTHERMOBILE','D19_TIERARTIKEL':'TP_ANIMAL','D19_VERSAND_ANZ_12':'TP_MAIL_12',
'D19_VERSAND_ANZ_24':'TP_MAIL_24', 'D19_VERSAND_DATUM': 'TP_MAIL_TOTAL', 'D19_VERSAND_OFFLINE_DATUM':'TP_MAIL_OFFLINE',
'D19_VERSAND_ONLINE_DATUM':'TP_MAIL_ONLINE','D19_VERSAND_ONLINE_QUOTE_12':'TP_prec_MAIL','D19_VERSAND_REST': 'TP_FURTHERMAIL',
'D19_VERSICHERUNGEN':'TP_INSURANCE','D19_VERSI_ANZ_12':'TP_INSURANCE_12','D19_VERSI_ANZ_24':'TP_INSURANCE_24',
'D19_VERSI_DATUM':'TP_INSURANCE_TOTAL','D19_VERSI_OFFLINE_DATUM':'TP_INSURANCE_OFFLINE','D19_VERSI_ONLINE_DATUM':'TP_INSURANCE_ONLINE',
'D19_VERSI_ONLINE_QUOTE_12':'TP_INSURANCE_ONLINE_12','D19_VOLLSORTIMENT':'TP_COMPLETERMAIL','D19_WEIN_FEINKOST':'TP_WINE',
'EWDICHTE':'POPULATION_DENSITY_KM','FINANZTYP':'FINANCIAL_TYPE','FINANZ_ANLEGER':'FT_INVESTOR','FINANZ_HAUSBAUER':'FT_OWNHOUSE',
'FINANZ_MINIMALIST':'FT_MINIMILIST','FINANZ_SPARER':'FT_SAVER','FINANZ_UNAUFFAELLIGER':'FT_UNREMARK','FINANZ_VORSORGER':'FT_PREPARED',
'GEBAEUDETYP':'BUILDING_TYPE','GEBAEUDETYP_RASTER':'INDUSTRIAL_AREA','GEBURTSJAHR':'DOB','GFK_URLAUBERTYP':'VACATION_HABIT',
'GREEN_AVANTGARDE':'GREEN_MOVEMENT','HH_EINKOMMEN_SCORE':'HH_NETINCOME_RANGE','INNENSTADT':'distance_center','KBA05_ALTER1':'CAR_SHARE_0031',
'KBA05_ALTER2':'CAR_SHARE_3145','KBA05_ALTER3':'CAR_SHARE_4560','KBA05_ALTER4':'CAR_SHARE_61PLUS','KBA05_ANHANG':'TRAILER_SHARE_MC',
'KBA05_ANTG1':'COUNT_FAMILYHOUSE_CELL_12','KBA05_ANTG2':'COUNT_FAMILYHOUSE_CELL_35','KBA05_ANTG3':'COUNT_FAMILYHOUSE_CELL_610',
'KBA05_ANTG4':'COUNT_FAMILYHOUSE_CELL_10PLUS','KBA05_AUTOQUOT':'CAR_SHARE_HOUSEHOLD','KBA05_BAUMAX':'COMMON_BUILDINGTYPE_IN_CELL',
'KBA05_CCM1': 'CAR_SHARE_CMM1','KBA05_CCM2': 'CAR_SHARE_CMM2','KBA05_CCM3': 'CAR_SHARE_CMM3','KBA05_CCM4': 'CAR_SHARE_CMM4',
'KBA05_DIESEL':'CAR_DIESEL_SHARE_MC','KBA05_FRAU':'CAR_SHARE_FEMALE','KBA05_GBZ':'COUNT_BUILDING_MC','KBA13_HALTER_20':'CAR_SHARE_PLZ8_21BELOW',
'KBA13_HALTER_25':'CAR_SHARE_PLZ8_2125','KBA13_HALTER_30':'CAR_SHARE_PLZ8_2630','KBA13_HALTER_35':'CAR_SHARE_PLZ8_3135',
'KBA13_HALTER_40':'CAR_SHARE_PLZ8_3640','KBA13_HALTER_45':'CAR_SHARE_PLZ8_4145','KBA13_HALTER_50':'CAR_SHARE_PLZ8_4650',
'KBA13_HALTER_60':'CAR_SHARE_PLZ8_5660','KBA13_HALTER_65':'CAR_SHARE_PLZ8_6165','KBA13_HALTER_66':'CAR_SHARE_PLZ8_66PLUS',
'KBA13_HERST_ASIEN':'SHARE_ASIAN_MANUF_PLZ8','KBA13_HERST_AUDI_VW':'SHARE_AUDI_VW_PLZ8','KBA13_HERST_BMW_BENZ':'SHARE_BMW_BENZ_PLZ8',
'KBA13_HERST_EUROPA':'SHARE_EUROPE_MANUF_PLZ8','KBA13_HERST_FORD_OPEL':'SHARE_FORD_OPEL_PLZ8','KBA13_HERST_SONST':'SHARE_OTHER_CARMANU_PLZ8',
'KBA13_KMH_0_140':'SHARE_CAR_SPEED_0_140','KBA13_KMH_110':'SHARE_CAR_SPEED_110','KBA13_KMH_140':'SHARE_CAR_SPEED_140',
'KBA13_KMH_140_210':'SHARE_CAR_SPEED_140_210','KBA13_KMH_180':'SHARE_CAR_SPEED_180','KBA13_KMH_210':'SHARE_CAR_SPEED_210',
'KBA13_KMH_211':'SHARE_CAR_SPEED_211','KBA13_KMH_250':'SHARE_CAR_SPEED_250','KBA13_KMH_251':'SHARE_CAR_SPEED_251',
}
def plot_comparison_charts(column, df1, df2):
'''
Plots 2 charts, one for AZDIAS and other for CUSTOMER dataframes for a column.
Input:
column: A column to be plotted
df1: The AZDIAS dataframe
df2: The CUSTOMERS dataframe
'''
fig, (ax1, ax2) = plt.subplots(figsize=(12,4), ncols=2)
sns.countplot(x = column, data=df1, ax=ax1, palette="husl")
ax1.set_xlabel('Value')
ax1.set_title('Distribution of ' + column + ' in AZDIAS')
sns.countplot(x = column, data=df2, ax=ax2, palette="husl")
ax2.set_xlabel('Value')
ax2.set_title('Distribution of ' + column + ' in CUSTOMER')
fig.tight_layout()
plt.show()
def data_pre_process(df, drop=True):
'''
This method performs following preprocessing steps on data
Input:
df: The dataframe to perform preprocessing steps
Output:
df: The preprocessed dataframe
'''
labelEncoder = LabelEncoder()
scaling = StandardScaler()
imputer = SimpleImputer()
df['CAMEO_DEU_2015'] = df[['CAMEO_DEU_2015']].fillna(value = '0')
df['CAMEO_DEU_2015'] = labelEncoder.fit_transform(df['CAMEO_DEU_2015'])
df['CAMEO_DEUG_2015'] = df['CAMEO_DEUG_2015'].apply(lambda x: 0 if x == 'X' else x)
df['CAMEO_DEUG_2015'] = df[['CAMEO_DEUG_2015']].fillna(value = 0)
df['CAMEO_DEUG_2015'] = df['CAMEO_DEUG_2015'].apply(lambda x: int(x))
df['CAMEO_INTL_2015'] = df['CAMEO_INTL_2015'].apply(lambda x: 0 if x == 'XX' else x)
df['CAMEO_INTL_2015'] = df[['CAMEO_INTL_2015']].fillna(value = 0)
df['CAMEO_INTL_2015'] = df['CAMEO_INTL_2015'].apply(lambda x: int(x))
df['D19_LETZTER_KAUF_BRANCHE'] = df[['D19_LETZTER_KAUF_BRANCHE']].fillna(value = '0')
df['D19_LETZTER_KAUF_BRANCHE'] = labelEncoder.fit_transform(df['D19_LETZTER_KAUF_BRANCHE'])
df['OST_WEST_KZ'] = df[['OST_WEST_KZ']].fillna(value = 'X')
df['OST_WEST_KZ'] = labelEncoder.fit_transform(df['OST_WEST_KZ'])
df['EXTSEL992'] = df[['EXTSEL992']].fillna(value = df['EXTSEL992'].median())
df['KK_KUNDENTYP'] = df[['KK_KUNDENTYP']].fillna(value = 0.0)
df['ALTER_KIND1'] = df['ALTER_KIND1'].apply(lambda x: 0 if type(x) != int else x)
df['ALTER_KIND2'] = df['ALTER_KIND2'].apply(lambda x: 0 if type(x) != int else x)
df['ALTER_KIND3'] = df['ALTER_KIND3'].apply(lambda x: 0 if type(x) != int else x)
df['ALTER_KIND4'] = df['ALTER_KIND4'].apply(lambda x: 0 if type(x) != int else x)
try:
df['YEAR_ADDED'] = df['EINGEFUEGT_AM'].apply(lambda x: -1 if str(x) == 'nan'
else datetime.strptime(str(x), '%Y-%m-%d %H:%M:%S').year)
df.drop(columns=['EINGEFUEGT_AM'],inplace=True)
except:
pass
try:
df.drop(columns=['LNR'],inplace=True)
except:
pass
columns = df.columns
df = pd.DataFrame(imputer.fit_transform(df),columns = columns)
if drop:
df.dropna(inplace = True)
return df
def data_pre_process_test(df):
'''
This method performs following preprocessing steps on test data.
Input:
df: The dataframe to perform preprocessing on.
Output:
df: The preprocessed dataframe
'''
imputer = SimpleImputer()
df = df.drop(["ALTER_KIND4","ALTER_KIND3","ALTER_KIND2","ALTER_KIND1"],axis = 1)
df['CAMEO_DEUG_2015']=[-1 if i == "X" else i for i in df['CAMEO_DEUG_2015']]
df['CAMEO_INTL_2015']= [-1 if i == "XX" else i for i in df['CAMEO_INTL_2015']]
df["EINGEFUEGT_AM"] = df["EINGEFUEGT_AM"].astype("datetime64")
df["CAMEO_DEUG_2015"] = df["CAMEO_DEUG_2015"].astype("float64")
df["CAMEO_INTL_2015"] = df["CAMEO_INTL_2015"].astype("float64")
df["EINGEFUEGT_AM"] = df["EINGEFUEGT_AM"].apply(lambda x: x.year - 1991)
df["OST_WEST_KZ"] = df["OST_WEST_KZ"].replace({'W': 1,'O': 2,})
df['PRAEGENDE_JUGENDJAHR_decade'] = df['PRAEGENDE_JUGENDJAHRE'].replace({
1: '1',2: '1',3: '2',4: '2',5: '3',6: '3',7: '3',8: '4',9: '4',10: '5',11: '5',12: '5',13: '5',14: '6',15: '6'})
df['PRAEGENDE_JUGENDJAHR_movements'] = df['PRAEGENDE_JUGENDJAHRE'].replace({
1: 2,2: 1,3: 2,4: 1,5: 2,6: 1,7: 1,8: 2,9: 1,10: 2,11: 1,12: 2,13: 1,14: 2,15: 1})
df['CAMEO_INTL_2015_wealth'] = df['CAMEO_INTL_2015'].replace({
11: 5,12: 5,13: 5,14: 5,15: 5,21: 4,22: 4,23: 4,24: 4,25: 4,31: 3,32: 3,33: 3,34: 3,35: 3,41: 2,42: 2,43: 2,44: 2,
45: 2,51: 1,52: 1,53: 1,54: 1,55: 1})
df['CAMEO_INTL_2015_lifestage'] = df['CAMEO_INTL_2015'].replace({
11: '1',12: '2',13: '3',14: '4',15: '5',21: '1',22: '2',23: '3',24: '4',25: '5',31: '1',32: '2',33: '3',34: '4',35: '5',
41: '1',42: '2',43: '3',44: '4',45: '5',51: '1',52: '2',53: '3',54: '4',55: '5'})
df['WOHNLAGE_rural'] = df['WOHNLAGE'].replace({
0: 2,1: 2,2: 2,3: 2,4: 2,5: 2,7: 1,8: 1})
df['WOHNLAGE_neighborhood'] = df['WOHNLAGE'].replace({
0: 1,1: 6,2: 5,3: 4,4: 3,5: 2,7: 1,8: 1})
df = df.drop(['PRAEGENDE_JUGENDJAHRE','CAMEO_INTL_2015','WOHNLAGE'],axis = 1)
df["D19_LETZTER_KAUF_BRANCHE"] = df["D19_LETZTER_KAUF_BRANCHE"].astype("category")
df["D19_LETZTER_KAUF_BRANCHE"] = df["D19_LETZTER_KAUF_BRANCHE"].cat.codes
df["CAMEO_DEU_2015"] = df["CAMEO_DEU_2015"].astype("category")
df["CAMEO_DEU_2015"] = df["CAMEO_DEU_2015"].cat.codes
#df = df.drop(corr[1],axis = 1)
columns = df.columns
df = pd.DataFrame(imputer.fit_transform(df),columns = columns)
df.dropna(inplace = True)
return df
def classifier_GS(clf, param_grid, X_train, y_train):
'''
Fits a classifier to its training data and prints its ROC AUC score.
INPUT:
- clf (classifier): classifier to fit
- param_grid (dict): classifier parameters used with GridSearchCV
- X_train (DataFrame): training input
- y_train (DataFrame): training output
OUTPUT:
- classifier: input classifier fitted to the training data
'''
# cv uses StratifiedKFold
# scoring roc_auc available as parameter
grid = GridSearchCV(estimator=clf, param_grid=param_grid, scoring='roc_auc', cv=5)
grid.fit(X_train, y_train)
print(grid.best_score_)
return grid.best_estimator_