forked from NVIDIA/FastPhotoStyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_stylization.py
75 lines (56 loc) · 2.29 KB
/
process_stylization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import time
import numpy as np
from PIL import Image
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.utils as utils
from photo_smooth import Propagator
from smooth_filter import smooth_filter
# Load Propagator
p_pro = Propagator()
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))
def stylization(p_wct, content_image_path, style_image_path, content_seg_path, style_seg_path, output_image_path,
cuda):
# Load image
cont_img = Image.open(content_image_path).convert('RGB')
styl_img = Image.open(style_image_path).convert('RGB')
try:
cont_seg = Image.open(content_seg_path)
styl_seg = Image.open(style_seg_path)
except:
cont_seg = []
styl_seg = []
cont_img = transforms.ToTensor()(cont_img).unsqueeze(0)
styl_img = transforms.ToTensor()(styl_img).unsqueeze(0)
if cuda:
cont_img = cont_img.cuda(0)
styl_img = styl_img.cuda(0)
p_wct.cuda(0)
cont_img = Variable(cont_img, volatile=True)
styl_img = Variable(styl_img, volatile=True)
cont_seg = np.asarray(cont_seg)
styl_seg = np.asarray(styl_seg)
with Timer("Elapsed time in stylization: %f"):
stylized_img = p_wct.transform(cont_img, styl_img, cont_seg, styl_seg)
utils.save_image(stylized_img.data.cpu().float(), output_image_path, nrow=1)
with Timer("Elapsed time in propagation: %f"):
out_img = p_pro.process(output_image_path, content_image_path)
out_img.save(output_image_path)
if not cuda:
print("NotImplemented: The CPU version of smooth filter has not been implemented currently.")
return
with Timer("Elapsed time in post processing: %f"):
out_img = smooth_filter(output_image_path, content_image_path, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)