-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamlit_app.py
293 lines (225 loc) · 15.3 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import streamlit as st
import pandas as pd
import numpy as np
from funcs import *
import streamlit.components.v1 as components
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
##################################################################################################
##################################################################################################
def get_image_url(title):
row = edata[edata['Title'] == title]
if row.empty:
return None
return row.iloc[0]['Image']
##################################################################################################
def main():
st.set_page_config(layout="wide", initial_sidebar_state='expanded')
sidebar_header = '''This is a recommender system that finds similar items to a given clothing article or recommend items for a customer using 2 different approaches:'''
page_options = ["Reccomend from similar items",
"Recommendations based on customer purchase history",
"Profile Based",
"Product Captioning"]
github_icon = 'GitHub_Logo.png'
st.sidebar.image('logo.jpeg')
st.sidebar.info(sidebar_header)
st.sidebar.image('git.png', width=120, output_format='png')
st.sidebar.write("[Link to the Repo](https://github.com/Vignan-ACSE/recc-system)", unsafe_allow_html=True)
page_selection = st.sidebar.radio("Try", page_options)
articles_df = pd.read_csv('articles.csv')
models = ['Similar items based on image embeddings',
'Similar items based on text embeddings',
'Similar items based discriptive features',
'Similar items based on embeddings from TensorFlow Recommendrs model',
'Similar items based on a combination of all embeddings']
model_descs = ['Image embeddings are calculated using VGG16 CNN from Keras',
'Text description embeddings are calculated using "universal-sentence-encoder" from TensorFlow Hub',
'Features embeddings are calculated by one-hot encoding the descriptive features provided by H&M',
'TFRS model performes a collaborative filtering based ranking using a neural network',
'A concatenation of all embeddings above is used to find similar items']
#########################################################################################
#########################################################################################
if page_selection == "Reccomend from similar items":
articles_rcmnds = pd.read_csv('results/articles_rcmnds.csv')
articles = articles_rcmnds.article_id.unique()
get_item = st.sidebar.button('Get Random Item')
if get_item:
df = pd.read_csv('results/profiles.csv')
rand_article = np.random.choice(articles)
# Retrieve the data for the chosen article
wanted_data = ['prod_name','product_type_name','colour_group_name','perceived_colour_value_name','department_name','index_group_name']
article_details = df.loc[df['article_id'] == rand_article,wanted_data]
article_data = articles_rcmnds[articles_rcmnds.article_id == rand_article]
rand_article_desc = articles_df[articles_df.article_id == rand_article].detail_desc.iloc[0]
image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds = get_rcmnds(article_data)
rcmnds = (image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
scores = get_rcmnds_scores(article_data)
features = get_rcmnds_features(articles_df, image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
images = get_rcmnds_images(image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
detail_descs = get_rcmnds_desc(articles_df, image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
st.sidebar.image(get_item_image(str(rand_article), width=200, height=300))
st.sidebar.write('Article description')
st.sidebar.caption(rand_article_desc)
with st.container():
st.subheader('Product Details')
st.write('Product Name : '.format(article_details['prod_name']))
st.write('Product Category: ',article_details['product_type_name'])
st.write('Prefered Color by most of the users: ',article_details['colour_group_name'])
st.write('Perceived Colour: ',article_details['perceived_colour_value_name'])
st.write('Avaliable Under: ' + str(article_details['index_group_name'])+' Section')
st.write(article_details)
for i, model, image_set, score_set, model_desc, detail_desc_set, features_set, rcmnds_set in zip(range(5), models, images, scores, model_descs, detail_descs, features, rcmnds):
container = st.expander(model, expanded = True)
with container:
cols = st.columns(7)
cols[0].write('###### Similarity Score')
cols[0].caption(model_desc)
for img, col, score, detail_desc, rcmnd in zip(image_set[1:], cols[1:], score_set[1:], detail_desc_set[1:], rcmnds_set[1:]):
with col:
st.caption('{}'.format(score))
st.image(img, use_column_width=True)
if model == 'Similar items based on text embeddings':
st.caption(detail_desc)
#########################################################################################
#########################################################################################
if page_selection == "Product Captioning":
captions = pd.read_csv('caption_desc_embeds.csv', dtype={'id':str}).drop('Unnamed: 0', axis=1)
get_item = st.sidebar.button('Get Random Item')
st.sidebar.warning('In this section you get try a transformer based model that generates product captions given its image')
if get_item:
rand_article = np.random.choice(captions.id)
desc = captions[captions.id == rand_article].desc.iloc[0]
caption = captions[captions.id == rand_article].caption.iloc[0].capitalize()
cols = st.columns(2)
with cols[0]:
st.image(get_item_image(str(rand_article[1:]), resize=True, width=300, height=400))
with cols[1]:
with st.expander('Actual Product Description', expanded=True):
components.html(f"""
<header>
<h4 style="color: #253f4e;">{desc}</h4>
</header>
""")
with st.expander('Generated Product Description', expanded=True):
components.html(f"""
<header>
<h4 style="color: #253f4e;">{caption}</h4>
</header>
""")
#########################################################################################
#########################################################################################
if page_selection == "Recommendations based on customer purchase history":
customers_rcmnds = pd.read_csv('results/customers_rcmnds.csv')
customers = customers_rcmnds.customer.unique()
get_item = st.sidebar.button('Get Random Purchase History of Customer')
if get_item:
st.sidebar.write('#### Customer history')
rand_customer = np.random.choice(customers)
customer_data = customers_rcmnds[customers_rcmnds.customer == rand_customer]
customer_history = np.array(eval(customer_data.history.iloc[0]))
image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds = get_rcmnds(customer_data)
scores = get_rcmnds_scores(customer_data)
features = get_rcmnds_features(articles_df, combined_rcmnds, tfrs_rcmnds, image_rcmnds, text_rcmnds, feature_rcmnds)
images = get_rcmnds_images(combined_rcmnds, tfrs_rcmnds, image_rcmnds, text_rcmnds, feature_rcmnds)
detail_descs = get_rcmnds_desc(articles_df, image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
rcmnds = (image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
splits = [customer_history[i:i+3] for i in range(0, len(customer_history), 3)]
for split in splits:
with st.sidebar.container():
cols = st.columns(3)
for item, col in zip(split, cols):
col.image(get_item_image(str(item), 100))
with st.container():
rand_customer_age = customers_rcmnds.loc[customers_rcmnds['customer'] == rand_customer, 'age'].values[0]
rand_customer_status = customers_rcmnds.loc[customers_rcmnds['customer'] == rand_customer, 'club_status'].values[0]
st.subheader("Customer Details")
st.write(f"Customer age : {rand_customer_age}")
st.write(f"Club Membership Status : {rand_customer_status}")
st.write(f"---------------------------------------------------------------------------------------------------------")
with st.container():
for i, model, image_set, score_set, model_desc, detail_desc_set, features_set, rcmnds_set in zip(range(5), models, images, scores, model_descs, detail_descs, features, rcmnds):
container = st.expander(model, expanded=True)
with container:
cols = st.columns(7)
cols[0].write('###### Similarity Score')
cols[0].caption(model_desc)
for img, col, score, detail_desc, rcmnd in zip(image_set[1:], cols[1:], score_set[1:], detail_desc_set[1:], rcmnds_set[1:]):
with col:
st.caption('{}'.format(score))
st.image(img, use_column_width=True)
######################################################################################################################
######################################################################################################################
if page_selection == 'Profile Based':
# Load your dataset
df = pd.read_csv("./results/profiles.csv")
# Get a list of unique values for a column
gender = st.radio("Select your gender:", ('Male', 'Female'))
age = st.number_input("Enter your age", min_value=0, max_value=120)
if gender == 'Male':
if age <= 10:
clothing_options = ['Kids Boy Denim', 'Kids Boy Jersey Basic', 'Young Boy UW/NW',
'Young Boy Big Acc', 'Baby Boy Jersey Fancy',
'Kids Boy Jersey Fancy', 'Kids Boy Trouser',
'Young Boy Jersey Fancy', 'Kids Boy Outdoor', 'Kids Boy Exclusive']
else:
clothing_options = ['Shirt', 'Light Basic Jersey', 'EQ H&M Man', 'Swimwear',
'Jersey Fancy', 'Jacket Smart', 'Belts', 'Underwear Jersey',
'Knitwear']
else:
if age <= 10:
clothing_options = ['Kids Girl S&T', 'Kids Girl Big Acc', 'Kids Girl Denim',
'Kids Girl Knitwear', 'Kids Girl Dresses', 'Girls Small Acc/Bags',
'Baby Girl Woven', 'Young Girl Big Acc', 'Young Girl Jersey Basic',
'Young Girl Jersey Fancy', 'Young Girl Swimwear',
'Young Girl Knitwear', 'Young Girl Shoes',
'Kids Girl Jersey Fancy']
else:
clothing_options = ['Casual Lingerie','Knitwear Basic', 'Woven top', 'Ladies Sport Bottoms',
'Woven Occasion', 'Knitwear', 'Outwear',
'Swimwear', 'Ladies Sport Bras',
'Trouser', 'Blouse & Dress','Jersey Basic',
'Jersey fancy', 'Dresses', 'Jersey',
'Other Accessories', 'Tops Woven', 'Trousers',
'Outdoor/Blazers', 'Expressive Lingerie',
'Bottoms', 'Socks', 'Jewellery',
'Accessories', 'Woven bottoms',
'Jewellery Extended', 'Tops Fancy Jersey',
'Flats', 'Asia Assortment', 'Suit jacket',
'Skirt', 'Denim Other Garments']
clothing = st.multiselect("Select your clothing items:", clothing_options)
# Filter the dataset based on the selected values
filtered_df = df[(df['department_name'].isin(clothing))]
ids = []
for index, row in filtered_df.iterrows():
ids.append(row['article_id'])
articles_df = pd.read_csv('articles.csv')
articles_rcmnds = pd.read_csv('results/articles_rcmnds.csv')
for id in ids:
rand_article = id
article_data = articles_rcmnds[articles_rcmnds.article_id == rand_article]
rand_article_desc = articles_df[articles_df.article_id == rand_article].detail_desc.iloc[0]
image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds = get_rcmnds(article_data)
rcmnds = (image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
scores = get_rcmnds_scores(article_data)
features = get_rcmnds_features(articles_df, image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
images = get_rcmnds_images(image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
detail_descs = get_rcmnds_desc(articles_df, image_rcmnds, text_rcmnds, feature_rcmnds, tfrs_rcmnds, combined_rcmnds)
st.sidebar.image(get_item_image(str(rand_article), width=200, height=300))
st.sidebar.write('Article description')
st.sidebar.caption(rand_article_desc)
with st.container():
for i, model, image_set, score_set, model_desc, detail_desc_set, features_set, rcmnds_set in zip(range(5), models, images, scores, model_descs, detail_descs, features, rcmnds):
container = st.expander(model, expanded = True)
with container:
if model == 'Similar items based on image embeddings':
continue
cols = st.columns(7)
cols[0].write('###### Similarity Score')
cols[0].caption(model_desc)
for img, col, score, detail_desc, rcmnd in zip(image_set[1:], cols[1:], score_set[1:], detail_desc_set[1:], rcmnds_set[1:]):
with col:
st.caption('{}'.format(score))
st.image(img, use_column_width=True)
if model == 'Similar items based on text embeddings':
st.caption(detail_desc)
main()