-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
197 lines (146 loc) · 6.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os.path as osp
import shutil
from pathlib import Path
import argparse
import numpy as np
from sklearn.metrics import f1_score, normalized_mutual_info_score, adjusted_rand_score
from sklearn.cluster import KMeans
import torch
from torch import nn
from torch.nn import functional as F
from model import SRHGN
from utils import set_random_seed, load_data, get_n_params, set_logger
def load_params():
parser = argparse.ArgumentParser(description='Training SR-HGN')
parser.add_argument('--prefix', type=str, default='SR-HGN')
parser.add_argument('--gpu', type=int, default=7)
parser.add_argument('--feat', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--dataset', type=str, default='acm')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--verbose', type=int, default=10)
parser.add_argument('--train_split', type=float, default=0.2)
parser.add_argument('--val_split', type=float, default=0.3)
parser.add_argument('--max_lr', type=float, default=1e-3)
parser.add_argument('--clip', type=int, default=1.0)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--input_dim', type=int, default=256)
parser.add_argument('--hidden_dim', type=int, default=256)
parser.add_argument('--num_node_heads', type=int, default=4)
parser.add_argument('--num_type_heads', type=int, default=4)
parser.add_argument('--alpha', type=float, default=0.5)
parser.add_argument('--cluster', action='store_true')
args = parser.parse_args()
args = vars(args)
return args
def init_feat(G, n_inp, features):
# Randomly initialize features if features don't exist
input_dims = {}
for ntype in G.ntypes:
emb = nn.Parameter(torch.Tensor(G.number_of_nodes(ntype), n_inp), requires_grad=True)
nn.init.xavier_uniform_(emb)
feats = features.get(ntype, emb)
G.nodes[ntype].data['x'] = feats
input_dims[ntype] = feats.shape[1]
return G, input_dims
def train(model, G, labels, target, optimizer, scheduler, train_idx, clip=1.0):
model.train()
logits, _, _ = model(G, target)
loss = F.cross_entropy(logits[train_idx], labels[train_idx])
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
scheduler.step()
return loss.item()
def eval(model, G, labels, target, train_idx, val_idx, test_idx):
model.eval()
logits, _, _ = model(G, target)
pred = logits.argmax(1).detach().cpu().numpy()
train_macro_f1 = f1_score(labels[train_idx].cpu(), pred[train_idx], average='macro')
train_micro_f1 = f1_score(labels[train_idx].cpu(), pred[train_idx], average='micro')
val_macro_f1 = f1_score(labels[val_idx].cpu(), pred[val_idx], average='macro')
val_micro_f1 = f1_score(labels[val_idx].cpu(), pred[val_idx], average='micro')
test_macro_f1 = f1_score(labels[test_idx].cpu(), pred[test_idx], average='macro')
test_micro_f1 = f1_score(labels[test_idx].cpu(), pred[test_idx], average='micro')
return {
'train_maf1': train_macro_f1,
'train_mif1': train_micro_f1,
'val_maf1': val_macro_f1,
'val_mif1': val_micro_f1,
'test_maf1': test_macro_f1,
'test_mif1': test_micro_f1
}
def cluster(model, G, target, labels):
model.eval()
_, embedding, attns = model(G, target)
embedding = embedding.detach().cpu().numpy()
labels = labels.cpu()
kmeans = KMeans(n_clusters=len(torch.unique(labels)), random_state=42).fit(embedding)
nmi = normalized_mutual_info_score(labels, kmeans.labels_)
ari = adjusted_rand_score(labels, kmeans.labels_)
return {
'nmi': nmi,
'ari': ari
}
def main(params):
device = torch.device(f"cuda:{params['gpu']}" if torch.cuda.is_available() else 'cpu')
my_str = f"{params['prefix']}_{params['dataset']}"
logger = set_logger(my_str)
logger.info(params)
checkpoints_path = f'checkpoints'
Path(checkpoints_path).mkdir(parents=True, exist_ok=True)
G, node_dict, edge_dict, features, labels, num_classes, train_idx, val_idx, test_idx, train_mask, val_mask, test_mask, target = load_data(params['dataset'], params['train_split'], params['val_split'], params['feat'])
G, input_dims = init_feat(G, params['input_dim'], features)
G = G.to(device)
labels = labels.to(device)
model = SRHGN(G,
node_dict, edge_dict,
input_dims=input_dims,
hidden_dim=params['hidden_dim'],
output_dim=labels.max().item() + 1,
num_layers=params['num_layers'],
num_node_heads=params['num_node_heads'],
num_type_heads=params['num_type_heads'],
alpha=params['alpha']).to(device)
optimizer = torch.optim.Adam(model.parameters(), weight_decay=params['weight_decay'])
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, total_steps=params['epochs'], max_lr=params['max_lr'])
logger.info('Training SR-HGN with #param: {:d}'.format(get_n_params(model)))
best_val_mif1 = 0
best_epoch = 0
for epoch in range(1, params['epochs'] + 1):
loss = train(model, G, labels, target, optimizer, scheduler, train_idx, clip=params['clip'])
if epoch % params['verbose'] == 0:
results = eval(model, G, labels, target, train_idx, val_idx, test_idx)
if results['val_mif1'] > best_val_mif1:
best_val_mif1 = results['val_mif1']
best_results = results
best_epoch = epoch
logger.info('Epoch: {:d} | LR: {:.4f} | Loss {:.4f} | Val MiF1: {:.4f} (Best: {:.4f}) | Test MiF1: {:.4f} (Best: {:.4f})'.format(
epoch,
optimizer.param_groups[0]['lr'],
loss,
results['val_mif1'],
best_results['val_mif1'],
results['test_mif1'],
best_results['test_mif1']
))
torch.save(model.state_dict(), osp.join(checkpoints_path, f'{my_str}_{epoch}.pkl'))
logger.info('Best Epoch: {:d} | Train MiF1: {:.4f}, MaF1: {:.4f} | Val MiF1: {:.4f}, MaF1: {:.4f} | Test MiF1: {:.4f}, MaF1: {:.4f}'.format(
best_epoch,
best_results['train_mif1'],
best_results['train_maf1'],
best_results['val_mif1'],
best_results['val_maf1'],
best_results['test_mif1'],
best_results['test_maf1']
))
if params['cluster']:
model.load_state_dict(torch.load(osp.join(checkpoints_path, f'{my_str}_{best_epoch}.pkl')))
cluster_results = cluster(model, G, target, labels)
logger.info('NMI: {:.4f} | ARI: {:.4f}'.format(cluster_results['nmi'], cluster_results['ari']))
if __name__ == '__main__':
params = load_params()
set_random_seed(params['seed'])
main(params)