This repository has been archived by the owner on Sep 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpectimax_agent.py
71 lines (63 loc) · 3.26 KB
/
expectimax_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import random
from typing import Optional
import othello
from log_referee import LogReferee
import evaluation
class ExpectimaxAgent(othello.Agent):
def __init__(self, play_as: othello.Player, search_depth: int =2, eval_func=evaluation.heuristic_eval_comprehensive) -> None:
super().__init__()
self.play_as = play_as
self.depth = search_depth
self.evaluation_function = lambda state: eval_func(state, self.play_as)
def play(self, state: othello.State) -> Optional[othello.Action]:
legal_actions = list(state.get_legal_actions(self.play_as))
if legal_actions == []:
return None
else:
def expectimax(currentGameState, depth, player):
if currentGameState.is_terminal():
return self.evaluation_function(currentGameState)
legal_actions = list(currentGameState.get_legal_actions(player))
if len(legal_actions) == 0:
return self.evaluation_function(currentGameState)
scores = []
if player != self.play_as:
if depth == self.depth:
if len(legal_actions) == 0:
return self.evaluation_function(currentGameState)
scores = 0.0
for action in legal_actions:
childGameState = currentGameState.perform_action(player, action)
scores += self.evaluation_function(currentGameState)
return scores / len(legal_actions)
else:
if len(legal_actions) == 0:
return expectimax(currentGameState, depth + 1, player.adversary)
scores = 0.0
for action in legal_actions:
childGameState = currentGameState.perform_action(player, action)
scores += expectimax(childGameState, depth + 1, player.adversary)
return scores / len(legal_actions)
else:
if len(legal_actions) == 0:
return expectimax(currentGameState, depth, player.adversary)
for action in legal_actions:
childGameState = currentGameState.perform_action(player, action)
scores.append(expectimax(childGameState, depth, player.adversary))
return max(scores)
scores = []
# Choose one of the best actions
for action in legal_actions:
childgameState = state.perform_action(self.play_as, action)
scores.append(expectimax(childgameState, 1, self.play_as.adversary))
bestScore = max(scores)
bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore]
# Pick randomly among the best
chosenIndex = random.choice(bestIndices)
return legal_actions[chosenIndex]
def run_expectimax_agents() -> None:
referee = LogReferee(ExpectimaxAgent(othello.Player.DARK),
ExpectimaxAgent(othello.Player.LIGHT))
referee.run()
if __name__ == '__main__':
run_expectimax_agents()