-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbktree_test.go
250 lines (223 loc) · 5.27 KB
/
bktree_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
package bktree
import (
"fmt"
"math/rand"
"testing"
)
type entry uint64
func hamming(a, b uint64) int {
count := 0
var k uint64 = 1
for i := 0; i < 64; i++ {
if a&k != b&k {
count++
}
k <<= 1
}
return count
}
func (e entry) Distance(x Entry) int {
a := uint64(e)
b := uint64(x.(entry))
return hamming(a, b)
}
func TestEmptySearch(t *testing.T) {
var tree BKTree
results := tree.Search(entry(0), 0)
if len(results) != 0 {
t.Fatalf("empty tree should return empty results, bot got %d results", len(results))
}
}
func TestExactMatch(t *testing.T) {
var tree BKTree
for i := 0; i < 100; i++ {
tree.Add(entry(i))
}
for i := 0; i < 100; i++ {
t.Run(fmt.Sprintf("searching %d", i), func(st *testing.T) {
results := tree.Search(entry(i), 0)
if len(results) != 1 {
st.Fatalf("exact match should return only one result, but got %d results (%#v)", len(results), results)
}
if results[0].Distance != 0 {
st.Fatalf("exact match result should have 0 as Distance field, but got %d", results[0].Distance)
}
if int(results[0].Entry.(entry)) != i {
st.Fatalf("expected result entry value is %d, but got %d", i, int(results[0].Entry.(entry)))
}
})
}
}
func TestFuzzyMatch(t *testing.T) {
var tree BKTree
for i := 0; i < 100; i++ {
tree.Add(entry(i))
}
for i := 0; i < 100; i++ {
t.Run(fmt.Sprintf("searching %d", i), func(st *testing.T) {
results := tree.Search(entry(i), 2)
for _, result := range results {
if result.Distance > 2 {
st.Fatalf("Distance fields of results should be less than or equal to 2, but got %d", result.Distance)
}
if result.Entry.Distance(entry(i)) > 2 {
st.Fatalf("distances of result entries should be less than or equal to 2, but got %d", result.Distance)
}
}
})
}
}
const largeSize int = 1000000
const smallSize int = 1000
func BenchmarkConstruct(b *testing.B) {
randoms := make([]uint64, 100000)
for i := range randoms {
randoms[i] = rand.Uint64()
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
var tree BKTree
for _, r := range randoms {
tree.Add(entry(r))
}
}
}
func makeRandomTree(size int) *BKTree {
randoms := make([]int, size)
for i := range randoms {
randoms[i] = rand.Int()
}
var tree BKTree
for _, r := range randoms {
tree.Add(entry(r))
}
return &tree
}
func BenchmarkSearch_ExactForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 0)
}
}
func BenchmarkSearch_Tolerance1ForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 1)
}
}
func BenchmarkSearch_Tolerance2ForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 2)
}
}
func BenchmarkSearch_Tolerance4ForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 4)
}
}
func BenchmarkSearch_Tolerance8ForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 8)
}
}
func BenchmarkSearch_Tolerance32ForLargeTree(b *testing.B) {
tree := makeRandomTree(largeSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 32)
}
}
func BenchmarkLinearSearchForLargeSet(b *testing.B) {
randoms := make([]uint64, largeSize)
for i := range randoms {
randoms[i] = rand.Uint64()
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
cnt := 0
for _, c := range randoms {
if hamming(c, needle) <= 1 {
cnt++
}
}
}
}
func BenchmarkSearch_ExactForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 0)
}
}
func BenchmarkSearch_Tolerance1ForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 1)
}
}
func BenchmarkSearch_Tolerance2ForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 2)
}
}
func BenchmarkSearch_Tolerance4ForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 4)
}
}
func BenchmarkSearch_Tolerance8ForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 8)
}
}
func BenchmarkSearch_Tolerance32ForSmallTree(b *testing.B) {
tree := makeRandomTree(smallSize)
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
tree.Search(entry(needle), 32)
}
}
func BenchmarkLinearSearchForSmallSet(b *testing.B) {
randoms := make([]uint64, smallSize)
for i := range randoms {
randoms[i] = rand.Uint64()
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
needle := rand.Uint64()
cnt := 0
for _, c := range randoms {
if hamming(c, needle) <= 1 {
cnt++
}
}
}
}