-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
executable file
·362 lines (300 loc) · 14.7 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
---
title: "Ecosystem functioning and functional diversity of Sierra Nevada"
output:
flexdashboard::flex_dashboard:
navbar:
- { title: "Download Annual maps", href: "http://vlab.iecolab.es/ajpelu/eftSN_annual/", align: right}
theme: yeti
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
library("flexdashboard")
library("tidyverse")
library("here")
library("raster")
library("rasterVis")
library("tmap")
library("mapview")
library("lubridate")
library("leaflet")
library("leaflet.extras")
library("leaflet.opacity")
library("RColorBrewer")
library("leaflet.esri")
library("shiny")
library("leafem")
library("htmlwidgets")
library("leaflegend")
```
```{r interAnnualSeries}
## EFA
evi_mean <- raster(here::here("data/v2/Ecosystem_Functional_Attributes/EVI_Mean/Interannual_sumary/EVI_Mean_InterAnnualMean_2001-2018_C006_MOD13Q1_Pixel232.tif"))
evi_mmax <- raster(here::here("data/v2/Ecosystem_Functional_Attributes/EVI_DMAX/Interannual_sumary/EVI_DMAX_InterAnnualMean_2001-2018_C006_MOD13Q1_Pixel232.tif"))
evi_sSD <- raster(here::here("data/v2/Ecosystem_Functional_Attributes/EVI_sSD/Interannual_sumary/EVI_sSD_InterAnnualMean_2001-2018_C006_MOD13Q1_Pixel232.tif"))
## EFT
eft <- raster(here::here("data/v2/Ecosystem_Functional_Types/Interannual_sumary/EFTs_InterannualMode_2001-2018_C006_MOD13Q1_Pixel232.tif"))
NAvalue(eft) <- 0
eft_diss <- raster(here::here("data/v2/Ecosystem_Functional_Types/Interannual_sumary/EFTs_InterannualDissimilarity_2001-2018_C006_MOD13Q1_Pixel232.tif"))
NAvalue(eft_diss) <- 0
eft_var <- raster(here::here("data/v2/Ecosystem_Functional_Types/Interannual_sumary/EFTs_InterannualVariability_2001-2018_C006_MOD13Q1_Pixel232.tif"))
NAvalue(eft_var) <- 0
## EFD
eft_rarity <- raster(here::here("data/v2/Ecosystem_Functional_Diversity/EFT_Rarity/Interannual_sumary/EFT_Rarity_InterAnnualMean_2001-2018_C006_MOD13Q1_Pixel232.tif"))
eft_richness <- raster(here::here("data/v2/Ecosystem_Functional_Diversity/EFT_Richness/Interannual_sumary/EFT_Richness_InterAnnualMean_2001-2018_C006_MOD13Q1_Pixel232.tif"))
# Units
evi_mean <- evi_mean / 10000
evi_sSD <- evi_sSD / 10000
# Add months to evi_mmax
evi_mmax_levels <- data.frame(
level = 1:12,
month = c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
)
evi_mmax <- ratify(evi_mmax)
mmax_rat <- levels(evi_mmax)[[1]]
mmax_rat <- mmax_rat %>% left_join(evi_mmax_levels, by = c("ID" = "level"))
levels(evi_mmax) <- mmax_rat
evi_mmax_palette <- read_csv(here::here("data/paleta_mmax.csv"))
evi_mmax_palette <- evi_mmax_palette %>% left_join(evi_mmax_levels, by = "level")
# eft attributes
# https://rdrr.io/cran/raster/man/factor.html
eft_palette <- read_csv(here::here("data/paleta_eft.csv"))
# Asign eft attributes
# see an example from https://annakrystalli.me/intro-r-gis/raster.html
eft_levels <- eft_palette %>%
dplyr::select(eft_id, eft_code, eft_color) %>%
as.data.frame()
eft <- ratify(eft)
eft_rat <- levels(eft)[[1]]
eft_rat <- eft_rat %>% left_join(eft_levels, by = c("ID" = "eft_id"))
levels(eft) <- eft_rat
eftFactor <- deratify(eft, "eft_code")
# Rename layers
names(evi_mean) <- "EVI_Mean"
names(evi_mmax) <- "EVI_DateMax"
names(evi_sSD) <- "EVI_sSD"
names(eft) <- "EFT"
names(eftFactor) <- "EFT"
names(eft_var) <- "EFT var"
names(eft_diss) <- "Dissimilarity"
names(eft_rarity) <- "EFT rarity"
names(eft_richness) <- "EFT richness"
```
Ecosystem Functioning
=====================================
```{r map}
# Palettes
p_evi_mean <- colorNumeric(rainbow(10, rev = TRUE), domain = values(evi_mean), na.color = "transparent")
p_evi_sSD <- colorNumeric(rainbow(8, rev = TRUE), domain = values(evi_sSD), na.color = "transparent")
p_eft_var <- colorNumeric(rainbow(8, rev = TRUE), domain = values(eft_var), na.color = "transparent")
pal <- colorNumeric(rainbow(10), domain = NULL, na.color = "transparent")
p_inversa <- colorNumeric(rainbow(10, rev = TRUE), domain = NULL, na.color = "transparent")
p_eft <- colorFactor(eft_palette$eft_color, eft_palette$eft_nameLegend)
myext <- extent(evi_mean)
m <- leaflet() %>%
# fitBounds(myext@xmin, myext@ymin, myext@xmax, myext@ymax) %>%
setView(lat = 37.09, lng = -3.1, 11) %>%
addTiles(group = "Basemap") %>%
addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
# EFTs
addRasterImage(eftFactor,
group = "EFT",
colors = eft_palette$eft_color
) %>%
leafem::addImageQuery(eftFactor,
project = TRUE,
type = "mouse",
layerId = "EFT",
position = "topleft",
digits = 0
) %>%
addLegendFactor(title = "EFT",
orientation = 'horizontal',
labelStyle = 'font-size: 11px;',
pal = p_eft,
values = eft_palette$eft_nameLegend,
width = 11, height = 11,
position = 'bottomright',
group = 'EFT') %>%
# EVI mean
addRasterImage(evi_mean,
group = "EVI mean",
colors = p_evi_mean
) %>%
leafem::addImageQuery(evi_mean,
project = TRUE,
type = "mouse",
layerId = "EVI mean",
position = "topleft",
digits = 3
) %>%
addLegend(
title = "EVI mean", pal = p_evi_mean,
values = values(evi_mean),
group = "EVI mean"
) %>%
# EVI mmax
addRasterImage(evi_mmax,
group = "EVI mMax",
colors = evi_mmax_palette$color
) %>%
leafem::addImageQuery(evi_mmax,
project = TRUE,
type = "mouse",
layerId = "EVI mMax",
position = "topleft",
digits = 0,
) %>%
addLegend(
title = "EVI mMax", colors = evi_mmax_palette$color,
labels = evi_mmax_palette$month,
group = "EVI mMax"
) %>%
# EVI sSD
addRasterImage(evi_sSD,
group = "EVI sSD",
colors = p_evi_sSD
) %>%
leafem::addImageQuery(evi_sSD,
project = TRUE,
type = "mouse",
layerId = "EVI sSD",
position = "topleft",
digits = 3
) %>%
addLegend(
title = "EVI sSD",
pal = p_evi_sSD,
values = values(evi_sSD),
group = "EVI sSD"
) %>%
# EFT var
addRasterImage(eft_var,
group = "EFT inter-annual variability",
colors = p_eft_var
) %>%
leafem::addImageQuery(eft_var,
project = TRUE,
type = "mouse",
layerId = "EFT inter-annual variability",
position = "topleft",
digits = 2
) %>%
addLegend(
title = "EFT inter-annual variability",
pal = p_eft_var,
values = values(eft_var),
group = "EFT inter-annual variability"
) %>%
# EFT diss
addRasterImage(eft_diss,
group = "EFT Dissimilarity",
colors = p_inversa
) %>%
leafem::addImageQuery(eft_diss,
project = TRUE,
type = "mouse",
layerId = "EFT Dissimilarity",
position = "topleft",
digits = 1
) %>%
addLegend(
title = "Dissimilarity",
pal = p_inversa,
values = values(eft_diss),
group = "EFT Dissimilarity"
) %>%
# EFT rarity
addRasterImage(eft_rarity,
group = "EFT rarity",
colors = p_inversa
) %>%
leafem::addImageQuery(eft_rarity,
project = TRUE,
type = "mouse",
layerId = "EFT rarity",
position = "topleft",
digits = 1
) %>%
addLegend(
title = "EFT rarity", pal = pal,
values = values(eft_rarity),
group = "EFT rarity"
) %>%
# EFT richness
addRasterImage(eft_richness,
group = "EFT richness",
colors = p_inversa
) %>%
leafem::addImageQuery(eft_richness,
project = TRUE,
type = "mouse",
layerId = "EFT richness",
position = "topleft",
digits = 0
) %>%
addLegend(
title = "EFT richness", pal = p_inversa,
values = values(eft_richness),
group = "EFT richness"
) %>%
addLayersControl(
position = "topleft",
baseGroups = c("Satellite", "BaseMap"),
overlayGroups = c(
"EFT", "EVI mean", "EVI mMax", "EVI sSD",
"EFT inter-annual variability", "EFT Dissimilarity",
"EFT rarity", "EFT richness"
),
options = layersControlOptions(collapsed = TRUE)
)
mapita <- m %>%
leaflet::hideGroup("EVI mean") %>%
leaflet::hideGroup("EVI sSD") %>%
leaflet::hideGroup("EVI mMax") %>%
leaflet::hideGroup("EFT inter-annual variability") %>%
leaflet::hideGroup("EFT Dissimilarity") %>%
leaflet::hideGroup("EFT richness") %>%
leaflet::hideGroup("EFT rarity") %>%
leaflet::hideGroup("Dissimilarity")
mapita
```
Info
=====================================
Column {.tabset}
-----------------------------------------------------------------------
Here, we presents a description of the spatial heterogeneity and temporal variability of the ecosystem functioning of Sierra Nevada (SE Spain) from the vegetation dynamics captured through the spectral vegetation index EVI (Enhanced Vegetation Index) since 2001 to 2018 (product [MOD13Q1.006](https://lpdaac.usgs.gov/products/mod13q1v006/) from MODIS sensor). First, we provided three Ecosystem Functional Attributes (**EFAs**) (i.e., annual primary production, seasonality and phenology of carbon gains), as well as their integration into a synthetic mapping of Ecosystem Functional Types (EFTs). Second, we provided two measures of functional diversity, **EFT richness** and **EFT rarity**. Finally, to show which are the most stable and variable zones between year in terms of ecosystem functioning, we delivered the interannual variability in ecosystem functioning from two measures, EFTs interannual variability and EFTs interannual similarity.
**References**
+ Alcaraz-Segura, D., Cabello, J., Paruelo, J. M., & Delibes, M. 2009. Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach. Environmental Management, 43(1), 38-48. doi: [10.1007/s00267-008-9154-y](https://doi.org/10.1007/s00267-008-9154-y)
+ Alcaraz-Segura, D., Paruelo, J., Epstein, H., & Cabello, J. 2013. Environmental and human controls of ecosystem functional diversity in temperate South America. Remote Sensing, 5(1), 127-154. doi: [10.3390/rs5010127](https://doi.org/10.3390/rs5010127)
+ Paruelo, J. M., Jobbágy, E. G., & Sala, O. E. 2001. Current distribution of ecosystem functional types in temperate South America. Ecosystems, 4(7), 683-698. doi: [10.1007/s10021-001-0037-9](https://doi.org/10.1007/s10021-001-0037-9)
**More info**
+ Definition of [Ecosystem Functional Type](https://en.wikipedia.org/wiki/Ecosystem_Functional_Type) in Wikipedia.
### Ecosystem Functional Attributes (EFAs)
We identified three EFAs that capture most of the variance in the time series of vegetation indices and with a meaningful biological significance (Paruelo et al., 2001; Alcaraz-Segura et al., 2006). These attributes were calculated from the EVI seasonal curve or annual dynamics: the annual mean (***EVI_mean***; an estimator of primary production), the EVI seasonal coefficient of variation (***EVI_sCV***; a descriptor of seasonality), and the date of maximum EVI (***EVI_DMAX***; an indicator of phenology). To summarize the EFAs of 2001-2018, we calculated the mean of the period for each attribute.
### Ecosystem Functional Types (EFTs)
EFTs were identified following Alcaraz-Segura et al., (2013), from the three EFAs obtained. The range of values of each EFA was divided into four intervals, giving a potential number of 64 EFTs (4 × 4 × 4). For EVI_DMAX, the four intervals agreed with the four seasons of the year. For EVI_mean and EVI_sCV, we extracted the first, second, and third quartiles for each year and then calculated the quartiles means for the 16-year period. To name EFTs, we used two letters and a number: the first capital letter indicates net primary production (EVI_mean), increasing from A to D; the second small letter represents seasonality (EVI_sCV), decreasing from a to d; the numbers are a phenological indicator of the growing season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter. To summarize the EFTs of the 2001–2018 period, we calculated the dominant EFT (i.e., the mode value for each pixel) of the period.
### Ecosystem Functional Diversity
In order to characterize ecosystem functional diversity we used EFT richness and EFT rarity as indicators:
+ ***EFT richness*** map was calculated for each year by counting the number of different EFTs within a 4×4-pixel moving window (924 x 924 m; ~ 1 km^2) across the study area (Alcaraz-Segura et al., 2013). Then, an average richness map across all years was obtained.
+ ***EFT rarity*** map was calculated for each year as the relative extension of each EFT compared to the most abundant EFT (Cabello et al., 2013). Then, we calculated an average rarity map across the period.
\begin{equation}
\label{Eq:1}
\textbf{Rarity of } EFT_{i} = \frac{\text{Area } EFT_{max} - \text{Area } EFT_{i}} {\text{Area }EFT_{max}}
\end{equation}
where $\text{Area } EFT_{max}$ is the area occupied by the most abundant EFT and $\text{Area } EFT_{i}$ is the area of the $i$ EFT being evaluated, with $i$ ranging from 1 to 64.
### Stability in ecosystem functioning
In order to show which are the most stable areas and with the greatest inter-annual variability (either due to directional changes or fluctuations) in ecosystem functioning, the number of different EFTs that occurred in the same pixel in the period 2001-2018.
To obtain a measure equal to the interannual variability but at landscape level, the dissimilarity, i.e., Jaccard's index 1-coefficient, was calculated. Dissimilarity values range from 0 to 1, with 1 being the highest degree of dissimilarity in composition and relative abundance of EFTs and 0 being absent.
Credits
=====================================
This visualization was created within the "Collaboration Agreement between the Department of Environment and Land Planning of the Regional Government of Andalusia and the University of Granada for developing activities related to the Sierra Nevada Global-Change Observatory, within the framework of the Andalusian Network of Global Change Observatories". Funding support was also received from the projects "LIFE-ADAPTAMED (LIFE14 CCA/ES/000612): Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems" and the H2020 project "ECOPOTENTIAL: Improving future ecosystem benefits through earth observations" (http://www.ecopotential-project.eu/) (Agreement No 641762).
The **data** used for this visualization are available at:
* Cazorla BP; Cabello J; Reyes A; Guirado E; Peñas J; Pérez-Luque AJ; Alcaraz-Segura D. (2019): Ecosystem functioning and functional diversity of Sierra Nevada (SE Spain). University of Almería and Granada, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.904575
**More info**:
* Cazorla BP; Cabello J; Peñas J; Guirado E; Reyes A; Alcaraz-Segura D. (2019). Funcionamiento de la vegetación y diversidad funcional de los ecosistemas de Sierra Nevada. In: Peñas, J. y Lorite, J. (eds.), Biología de la Conservación de plantas en Sierra Nevada. Principios y retos para su preservación. Granada: Editorial Universidad de Granada.
<br>
**Developer**: Pérez-Luque, AJ [ajpelu@gmail.com](mailto:ajpelu@gmail.com)