-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample1.c
208 lines (179 loc) · 8.39 KB
/
example1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// calculation example using a datafile outputed by 'mie_mmls_solver'.
// verification of radiation force, radiation torque and absorbed energy
#include "emf_mie_mmls.h"
// radiation force and torque calculated by surface integral of maxwell stress tensor
int force_torque_integral(int i,double *vf,double *vn,MSPD *msp);
// absorbed energy calculated by surface integral of poynting vector.
int absorb_energy_poynting(int i,double *P,MSPD *msp);
int main(int argc,char *argv[])
{
MSPD msp;
double complex e[3],h[3],cet,fv;
double vf[3],vn[3],r[3],t,p;
int i;
read_dat_mmls(argv[1],&msp); // read data file
print_data_mmls(&msp); // print data
print_data_mmls_mksa(&msp); // print data in MKSA system of units
r[0]= 0.5; // set x-coordinate
r[1]= 0.0; // set y-coordinate
r[2]=-1.0; // set z-coordinate
total_EH_mmls(e,h,r,&msp); // calclation of total field ( add incident field to scattered field )
printf("Electromagnetic field at r=( % g,% g,% g )\n",r[0],r[1],r[2]);
fv=OSUtoMKSA_ElectricField(e[0]);
printf("Ex = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [V/m](MKSA))\n",creal(e[0]),cimag(e[0]),creal(fv),cimag(fv));
fv=OSUtoMKSA_ElectricField(e[1]);
printf("Ey = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [V/m](MKSA))\n",creal(e[1]),cimag(e[1]),creal(fv),cimag(fv));
fv=OSUtoMKSA_ElectricField(e[2]);
printf("Ez = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [V/m](MKSA))\n",creal(e[2]),cimag(e[2]),creal(fv),cimag(fv));
fv=OSUtoMKSA_MagneticField(h[0]);
printf("Hx = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [A/m](MKSA))\n",creal(h[0]),cimag(h[0]),creal(fv),cimag(fv));
fv=OSUtoMKSA_MagneticField(h[1]);
printf("Hy = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [A/m](MKSA))\n",creal(h[1]),cimag(h[1]),creal(fv),cimag(fv));
fv=OSUtoMKSA_MagneticField(h[2]);
printf("Hz = % 15.14e %+15.14e I (=% 15.14e %+15.14e I [A/m](MKSA))\n",creal(h[2]),cimag(h[2]),creal(fv),cimag(fv));
t=1.0e-3; // set time
cet=cexp(-I*msp.bm.omega*t);
printf("Real electromagnetic field at t=%g\n",t);
fv=OSUtoMKSA_ElectricField(e[0]*cet);
printf("Ex = % 15.14e (=% 15.14e [V/m](MKSA))\n",creal(e[0]*cet),creal(fv));
fv=OSUtoMKSA_ElectricField(e[1]*cet);
printf("Ey = % 15.14e (=% 15.14e [V/m](MKSA))\n",creal(e[1]*cet),creal(fv));
fv=OSUtoMKSA_ElectricField(e[2]*cet);
printf("Ez = % 15.14e (=% 15.14e [V/m](MKSA))\n",creal(e[2]*cet),creal(fv));
fv=OSUtoMKSA_MagneticField(h[0]*cet);
printf("Hx = % 15.14e (=% 15.14e [A/m](MKSA))\n",creal(h[0]*cet),creal(fv));
fv=OSUtoMKSA_MagneticField(h[1]*cet);
printf("Hy = % 15.14e (=% 15.14e [A/m](MKSA))\n",creal(h[1]*cet),creal(fv));
fv=OSUtoMKSA_MagneticField(h[2]*cet);
printf("Hz = % 15.14e (=% 15.14e [A/m](MKSA))\n",creal(h[2]*cet),creal(fv));
printf("\nRadiation force and torque\n");
for(i=0;i<msp.n_sphr;i++){
force_torque_mmls(i,vf,vn,&msp);
printf("Mie coefficient\n");
printf("sphere id %2d, F=( % 15.14g,% 15.14g,% 15.14g )\n",i,vf[0],vf[1],vf[2]);
printf(" %2d, N=( % 15.14g,% 15.14g,% 15.14g )\n",i,vn[0],vn[1],vn[2]);
printf(" %2d, F=( % 15.14g,% 15.14g,% 15.14g ) [ N ](MKSA)\n",i,OSUtoMKSA_Force(vf[0]),OSUtoMKSA_Force(vf[1]),OSUtoMKSA_Force(vf[2]));
printf(" %2d, N=( % 15.14g,% 15.14g,% 15.14g ) [N m](MKSA)\n",i,OSUtoMKSA_Torque(vn[0]),OSUtoMKSA_Torque(vn[1]),OSUtoMKSA_Torque(vn[2]));
if(force_torque_integral(i,vf,vn,&msp)){ // for verification
printf("Surface integral\n");
printf("sphere id %2d, F=( % 15.14g,% 15.14g,% 15.14g )\n",i,vf[0],vf[1],vf[2]);
printf(" %2d, N=( % 15.14g,% 15.14g,% 15.14g )\n",i,vn[0],vn[1],vn[2]);
printf(" %2d, F=( % 15.14g,% 15.14g,% 15.14g ) [ N ](MKSA)\n",i,OSUtoMKSA_Force(vf[0]),OSUtoMKSA_Force(vf[1]),OSUtoMKSA_Force(vf[2]));
printf(" %2d, N=( % 15.14g,% 15.14g,% 15.14g ) [N m](MKSA)\n",i,OSUtoMKSA_Torque(vn[0]),OSUtoMKSA_Torque(vn[1]),OSUtoMKSA_Torque(vn[2]));
}
}
printf("\nAbsorbed energy\n");
for(i=0;i<msp.n_sphr;i++){
absorbed_energy_mmls(i,&p,&msp);
printf("Mie coefficients\n");
printf("sphere id %2d, P=% 15.14g\n",i,p);
printf(" %2d, P=% 15.14g [W]\n",i,OSUtoMKSA_power(p));
if(absorb_energy_poynting(i,&p,&msp)){ // for verification
printf("Surface integral of Poynting vector (verification)\n");
printf("sphere id %2d, P=% 15.14g\n",i,p);
printf(" %2d, P=% 15.14g [W]\n",i,OSUtoMKSA_power(p));
}
}
free_mmls(&msp); // free allocated memory
return 0;
}
int force_torque_integral(int id,double *vf,double *vn,MSPD *msp)
{
const int nc=80;
double xt[nc],wt[nc],xp[2*nc],wp[2*nc];
double complex e[3],h[3];
double rc,r[3],Tx[3],Ty[3],Tz[3],sin_t,cos_t,sin_p,cos_p,eps,mu,aex2,aey2,aez2,ahx2,ahy2,ahz2,ne2,nh2;
double tfx,tfy,tfz,tnx,tny,tnz;
int i,j;
vf[0]=0.0; vf[1]=0.0; vf[2]=0.0;
vn[0]=0.0; vn[1]=0.0; vn[2]=0.0;
if(msp->n_sphr!=1){
//printf("this code can analize single sphere only. Return...\n");
return 0;
}
eps=msp->bm.n_0*msp->bm.n_0;
mu=1.0;
gauleg(0.0,M_PI,xt,wt,nc);
gauleg(0.0,2*M_PI,xp,wp,nc*2);
rc=msp->sp[id].a[msp->sp[id].n_l-1]*2.0;
for(i=0;i<2*nc;i++){ // phi 0 to 2pi
sin_p=sin(xp[i]); cos_p=cos(xp[i]);
tfx=0.0; tfy=0.0; tfz=0.0;
tnx=0.0; tny=0.0; tnz=0.0;
for(j=0;j<nc;j++){ // theta 0 to pi
sin_t=sin(xt[j]); cos_t=cos(xt[j]);
r[0]=rc*sin_t*cos_p+msp->sp[id].xs;
r[1]=rc*sin_t*sin_p+msp->sp[id].ys;
r[2]=rc*cos_t +msp->sp[id].zs;
total_EH_mmls(e,h,r,msp);
aex2=creal(e[0]*conj(e[0])); aey2=creal(e[1]*conj(e[1])); aez2=creal(e[2]*conj(e[2]));
ahx2=creal(h[0]*conj(h[0])); ahy2=creal(h[1]*conj(h[1])); ahz2=creal(h[2]*conj(h[2]));
ne2=aex2+aey2+aez2; nh2=ahx2+ahy2+ahz2;
// maxwell stress tensor
Tx[0]=0.5*(eps*aex2+mu*ahx2)-0.25*(eps*ne2+mu*nh2);
Tx[1]=0.5*(eps*creal(e[0]*conj(e[1]))+mu*creal(h[0]*conj(h[1])));
Tx[2]=0.5*(eps*creal(e[0]*conj(e[2]))+mu*creal(h[0]*conj(h[2])));
Ty[0]=0.5*(eps*creal(e[1]*conj(e[0]))+mu*creal(h[1]*conj(h[0])));
Ty[1]=0.5*(eps*aey2+mu*ahy2)-0.25*(eps*ne2+mu*nh2);
Ty[2]=0.5*(eps*creal(e[1]*conj(e[2]))+mu*creal(h[1]*conj(h[2])));
Tz[0]=0.5*(eps*creal(e[2]*conj(e[0]))+mu*creal(h[2]*conj(h[0])));
Tz[1]=0.5*(eps*creal(e[2]*conj(e[1]))+mu*creal(h[2]*conj(h[1])));
Tz[2]=0.5*(eps*aez2+mu*ahz2)-0.25*(eps*ne2+mu*nh2);
tfx+=(Tx[0]*sin_t*cos_p+Tx[1]*sin_t*sin_p+Tx[2]*cos_t)*rc*rc*sin_t*wt[j];
tfy+=(Ty[0]*sin_t*cos_p+Ty[1]*sin_t*sin_p+Ty[2]*cos_t)*rc*rc*sin_t*wt[j];
tfz+=(Tz[0]*sin_t*cos_p+Tz[1]*sin_t*sin_p+Tz[2]*cos_t)*rc*rc*sin_t*wt[j];
tnx+=( (Tz[0]*sin_t*cos_p+Tz[1]*sin_t*sin_p+Tz[2]*cos_t)*sin_t*sin_p
-(Ty[0]*sin_t*cos_p+Ty[1]*sin_t*sin_p+Ty[2]*cos_t)*cos_t)*rc*rc*rc*sin_t*wt[j];
tny+=( (Tx[0]*sin_t*cos_p+Tx[1]*sin_t*sin_p+Tx[2]*cos_t)*cos_t
-(Tz[0]*sin_t*cos_p+Tz[1]*sin_t*sin_p+Tz[2]*cos_t)*sin_t*cos_p)*rc*rc*rc*sin_t*wt[j];
tnz+=( (Ty[0]*sin_t*cos_p+Ty[1]*sin_t*sin_p+Ty[2]*cos_t)*sin_t*cos_p
-(Tx[0]*sin_t*cos_p+Tx[1]*sin_t*sin_p+Tx[2]*cos_t)*sin_t*sin_p)*rc*rc*rc*sin_t*wt[j];
}
vf[0]+=tfx*wp[i];
vf[1]+=tfy*wp[i];
vf[2]+=tfz*wp[i];
vn[0]+=tnx*wp[i];
vn[1]+=tny*wp[i];
vn[2]+=tnz*wp[i];
}
return 1;
}
int absorb_energy_poynting(int id,double *P,MSPD *msp)
{
const int nc=80;
double xt[nc],wt[nc],xp[2*nc],wp[2*nc];
double complex e[3],h[3];
double rc,r[3],n[3],vp[3],sin_t,cos_t,sin_p,cos_p;
double tp;
int i,j;
*P=0.0;
if(msp->n_sphr!=1){
//printf("this code can analize single sphere only. Return...\n");
return 0;
}
gauleg(0.0,M_PI,xt,wt,nc);
gauleg(0.0,2.0*M_PI,xp,wp,nc*2);
rc=msp->sp[id].a[msp->sp[id].n_l-1]*2.0;
for(i=0;i<2*nc;i++){ // phi 0 to 2pi
sin_p=sin(xp[i]); cos_p=cos(xp[i]);
tp=0.0;
for(j=0;j<nc;j++){ // theta 0 to pi
sin_t=sin(xt[j]); cos_t=cos(xt[j]);
n[0]=sin_t*cos_p;
n[1]=sin_t*sin_p;
n[2]=cos_t;
r[0]=rc*n[0]+msp->sp[id].xs;
r[1]=rc*n[1]+msp->sp[id].ys;
r[2]=rc*n[2]+msp->sp[id].zs;
total_EH_mmls(e,h,r,msp);
// poynting vector
vp[0]=creal(e[1]*conj(h[2])-e[2]*conj(h[1]));
vp[1]=creal(e[2]*conj(h[0])-e[0]*conj(h[2]));
vp[2]=creal(e[0]*conj(h[1])-e[1]*conj(h[0]));
tp+=(n[0]*vp[0]+n[1]*vp[1]+n[2]*vp[2])*rc*rc*sin_t*wt[j];
}
*P+=tp*wp[i];
}
*P*=-0.5;
return 1;
}