This repository has been archived by the owner on Aug 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_video.py
125 lines (100 loc) · 3.66 KB
/
process_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import cv2
import math
import bisect
import config
import log as l
import threading
import statistics
import process_geometry as gp
class CaptureThread(threading.Thread):
def __init__(self, file, sys, api_preferences):
threading.Thread.__init__(self)
self.sys = sys
self.file = file
self.api_preferences = api_preferences
def run(self):
print("Starting " + self.sys)
file_open(self.file, self.sys, self.api_preferences)
def file_open(file, sys, api_preferences):
"""
:param file: - Formed path to video source
:param sys: - Name of the window
:param api_preferences: - For video capturing with API Preference
:return:
For motion detection, neighboring frames are compared, and then specific boxes with a constant
change are identified. The movement_detection function is used to eliminate redundant data.
"""
cap = cv2.VideoCapture(file, api_preferences)
if not cap.isOpened():
print("Cannot open file")
exit(-1)
ret, frame1 = cap.read()
ret, frame2 = cap.read()
print("width = ", frame1.shape[1])
print("height = ", frame1.shape[0])
print("small boxes = ", frame1.shape[0] * frame1.shape[1] * config.PERCENT_BOX_AREA)
print("max distance between boxes = ", math.sqrt(frame1.shape[0] * frame1.shape[1] * config.PERCENT_BOX_DISTANCE))
area = frame1.shape[0] * frame1.shape[1]
update = 0 # general variable
box = None # general variable
xr = [] # for median_box
xl = [] # for median_box
yt = [] # for median_box
yb = [] # for median_box
old_box = None # for next_box_union
event = False
while True:
frame, new_box = gp.movement_detection(frame1, frame2, area)
frame1 = frame2
ret, frame2 = cap.read()
if config.PROCESS_MEDIAN:
if update == config.COUNT_NEXT_BOX_FRAME_UPDATE:
update = 0
xr.clear()
xl.clear()
yt.clear()
yb.clear()
box = None
if new_box:
if not event:
event = True
bisect.insort(xr, new_box.x + new_box.w)
bisect.insort(xl, new_box.x)
bisect.insort(yt, new_box.y)
bisect.insort(yb, new_box.y + new_box.h)
box = gp.Rect(int(statistics.median(xl)),
int(statistics.median(yt)),
int(statistics.median(xr) - statistics.median(xl)),
int(statistics.median(yb) - statistics.median(yt)))
else:
event = False
if config.PROCESS_NEXT_BOX:
if update == config.COUNT_MEDIAN_FRAME_UPDATE:
update = 0
old_box = None
box = None
if new_box:
if event:
event = False
else:
event = True
if old_box:
box = gp.rectangles_union([new_box, old_box])
else:
box = new_box
else:
if old_box:
box = old_box
else:
pass
old_box = box
if box:
cv2.rectangle(frame, (box.x, box.y), (box.x + box.w, box.y + box.h), config.BOX_COLOR, config.BOX_THICKNESS)
if event:
l.log.warning(f"Зафиксировано движение. Источник: {sys}")
cv2.imshow("frame", frame)
update = update + 1
if cv2.waitKey(1) == 27:
break
cap.release()
cv2.destroyAllWindows()