-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy patheval.py
executable file
·53 lines (42 loc) · 1.61 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from common.eval import *
model.eval()
if P.mode == 'test_acc':
from evals import test_classifier
with torch.no_grad():
error = test_classifier(P, model, test_loader, 0, logger=None)
elif P.mode == 'test_marginalized_acc':
from evals import test_classifier
with torch.no_grad():
error = test_classifier(P, model, test_loader, 0, marginal=True, logger=None)
elif P.mode in ['ood', 'ood_pre']:
if P.mode == 'ood':
from evals import eval_ood_detection
else:
from evals.ood_pre import eval_ood_detection
with torch.no_grad():
auroc_dict = eval_ood_detection(P, model, test_loader, ood_test_loader, P.ood_score,
train_loader=train_loader, simclr_aug=simclr_aug)
if P.one_class_idx is not None:
mean_dict = dict()
for ood_score in P.ood_score:
mean = 0
for ood in auroc_dict.keys():
mean += auroc_dict[ood][ood_score]
mean_dict[ood_score] = mean / len(auroc_dict.keys())
auroc_dict['one_class_mean'] = mean_dict
bests = []
for ood in auroc_dict.keys():
message = ''
best_auroc = 0
for ood_score, auroc in auroc_dict[ood].items():
message += '[%s %s %.4f] ' % (ood, ood_score, auroc)
if auroc > best_auroc:
best_auroc = auroc
message += '[%s %s %.4f] ' % (ood, 'best', best_auroc)
if P.print_score:
print(message)
bests.append(best_auroc)
bests = map('{:.4f}'.format, bests)
print('\t'.join(bests))
else:
raise NotImplementedError()