-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
85 lines (72 loc) · 3.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc_units=128):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc_units (int): Number of nodes in first and second hidden layers
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc0 = nn.Linear(state_size, fc_units)
self.bn0 = nn.BatchNorm1d(fc_units)
self.fc1 = nn.Linear(fc_units, fc_units)
# BN to keep the values flowing the network small, might also be good to do it for the critic
self.bn1 = nn.BatchNorm1d(fc_units)
self.fc2 = nn.Linear(fc_units, action_size)
#self.bn2 = nn.BatchNorm1d(action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc0.weight.data.uniform_(*hidden_init(self.fc1))
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.leaky_relu(self.fc0(state))
# to keep the values flowing the network small and avoid dimishing them in one step via tanh
x = self.bn0(x)
x = F.leaky_relu(self.fc1(x))
x = self.bn1(x) # same
x = self.fc2(x)
#x = self.bn2(x)
return torch.tanh(x)
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=128):
"""Initialize parameters and build model Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
#self.bn_fcs1 = nn.BatchNorm1d(fcs1_units)
self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
#self.bn_fc2 = nn.BatchNorm1d(fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.leaky_relu(self.fcs1(state))
x = torch.cat((xs, action), dim=1)
x = F.leaky_relu(self.fc2(x))
return self.fc3(x)