forked from charlesq34/pointnet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfixh5.py
59 lines (49 loc) · 1.69 KB
/
fixh5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import sys
import numpy as np
import h5py
from random import shuffle
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input', default='', help='.h5 file to fix')
parser.add_argument('--output', default='', help='path to fixed file')
FLAGS = parser.parse_args()
labelsMap = dict({"bird":0,"can":1,"cracker":2,"house":3,"shoe":4})
inv_map = {v: k for k, v in labelsMap.items()}
oldMap = dict({"bird":0,"bond":1,"can":2,"cracker":3,"house":4,"shoe":5,"teapot":6})
old_inv_map = {v: k for k, v in oldMap.items()}
def load_h5(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
return (data, label)
# Write numpy array data and label to h5_filename
def save_h5_data_label_normal(h5_filename, data, label,
data_dtype='float32', label_dtype='uint8'):
h5_fout = h5py.File(h5_filename)
h5_fout.create_dataset(
'data', data=data,
compression='gzip', compression_opts=4,
dtype=data_dtype)
h5_fout.create_dataset(
'label', data=label,
compression='gzip', compression_opts=1,
dtype=label_dtype)
h5_fout.close()
file2fix=FLAGS.input
fixedfilelocation=FLAGS.output
data,labels = load_h5(file2fix)
print(data.shape)
print(labels.shape)
newdata=[]
newlabels=[]
for i in range(len(labels)):
if labels[i] not in [1,6]:
newdata.append(data[i])
if labels[i]==0:
newlabels.append([0])
else:
newlabels.append(labels[i]-1)
save_h5_data_label_normal(fixedfilelocation,np.asarray(newdata),np.asarray(newlabels))