-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
70 lines (31 loc) · 1.06 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Visualizing the Logistic Function
x = np.arange(-10, 10, 0.01)
y = (1 / (1 + np.power(np.e, -x)))
y1 = (np.power(np.e, -x) / (1 + np.power(np.e, -x)))
line = 0.5 * x + 2
#changing line such that it limits between 0 & 1#
y_changed = (1 / (1 + np.power(np.e, -line)))
plt.plot(x, y)
plt.show()
plt.plot(x, y1)
plt.show()
plt.plot(x, line)
plt.show()
plt.plot(x, y_changed)
plt.show()
######################################################################
from sklearn.datasets import load_iris
dataset = load_iris()
X = dataset.data
y = dataset.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred = log_reg.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)