-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathParamTuning.m
94 lines (77 loc) · 2.89 KB
/
ParamTuning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
%% Tuning \lambda_3 and c values for best by-sample F1 score (McSleep)
%
% Repeat the procedure below for lambda_2 and lambda_1
% Or Alternatively, run the same analyses below for \lambda_i,c. i = 1,2,3.
%
% Last Edit: 6/11/2018
% Contact: Ankit Parekh (ankit.parekh@mssm.edu)
% This is part of McSleep Github repository. Please see
% github.com/aparek for citation guidelines
%% Initialize
clear; close all; clc
warning('off','all');
%% Set the parameters (see McSleep paper for details)
eegFilename = 'excerpt2';
params = struct(eegFilename,'excerpt2');
params.lam1 = 0.3;
params.lam2 = 6.5;
params.mu = 0.5; % mu = 0.5 is preferred
params.Nit = 85; % Can be as low as 25, but optimal is 50
params.K = 200; % Set it to sampling Frequenty
params.O = 100; % Ideally set it to 50% overlapping
% Bandpass filter parameters
params.f1 = 10; % om1 of the bandpass filter
params.f2 = 17; % om2 of the bandpass filter
params.filtOrder = 4; % Filter Order
%If global detection, then params.meanEnvelop = 1,
%i.e., Spindles present in all channels
params.meanEnvelope = 1;
% Other function parameters
params.desiredChannel = 3;
params.channels = [3 14 2];
params.plot = 0;
params.epoch = 1;
params.calculateCost = 0; % Avoid calculating cost to speed up
params.Full = 0;
params.Entire = 0;
params.ROC = 1;
params.startEpoch = 1;
params.endEpoch = 1;
%% Load Data
[params.data, header] = lab_read_edf([eegFilename, '.edf']);
fprintf([eegFilename, '.edf loaded \n']);
params.fs = header.samplingrate;
fs = params.fs;
params.y = params.data(params.channels,...
(params.startEpoch-1)*30*fs+1:(params.endEpoch)*fs*30);
N = fs * (params.endEpoch - params.startEpoch + 1 )*30;
visualScorer1 = load(['Visual_scoring1_',eegFilename,'.txt']);
vd1 = obtainVisualRecord(visualScorer1,fs,length(params.data));
visualScorer2 = load(['Visual_scoring2_',eegFilename,'.txt']);
vd2 = obtainVisualRecord(visualScorer2,fs,length(params.data));
%% F1 score as a function of threshold and lambda_3
Threshold = 0.1:0.1:1.3; %Increase this range, at the expense of time for best performance
lam3 = 34:2:58; %Increase the interval for values over a finer grid
F1_thresh = zeros(length(lam3),length(Threshold));
for i = 1:length(lam3)
for j = 1:length(Threshold)
params.lam3 = lam3(i);
params.Threshold = Threshold(j);
spindles = analyzeSpindles(params);
Score = F1score(spindles, vd1((params.startEpoch-1)*30*fs+1:params.endEpoch*30*fs), vd2((params.startEpoch-1)*30*fs+1:params.endEpoch*30*fs));
F1_thresh(i,j) = Score{2}(7);
end
end
%% Plot the results
MaxF1Score = max(F1_thresh(:))
set(0,'defaultaxesfontsize',9)
figure(1), clf
surf(lam3, Threshold, F1_thresh,'FaceColor','interp')
colorbar
hold on
xlabel('\lambda_3 (In paper, \lambda_2)')
ylabel('Threshold Value (c)')
zlabel('By sample F1 Score')
grid on
box off
title('By sample F1 scores for a range of c and \lambda_3')