-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparallelSpindleDetection.m
193 lines (146 loc) · 5.02 KB
/
parallelSpindleDetection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
function [spindles] = parallelSpindleDetection(params)
% function [spindles] = parallelSpindleDetection(params)
%
% This function runs the mcsleep spindle detection in parallel
% Ensure that the EDF file given by params.filename is in the current
% directory (or added to path)
%
% Please cite as:
% Multichannel Sleep Spindle Detection using Sparse Low-Rank Optimization
% A. Parekh, I. W. Selesnick, R. S. Osorio, A. W. Varga, D. M. Rapoport and I. Ayappa
% bioRxiv Preprint 2017, doi: https://doi.org/10.1101/104414
%
% Last EDIT: 4/22/2017
% Ankit Parekh
% Perm. Contact: ankit.parekh@nyu.edu
%
% Copyright (c) 2017. Ankit Parekh
fprintf('Multichannel spindle detector \n');
% Load the edf and necessary information
[data, header] = lab_read_edf([params.filename, '.edf']);
fprintf([params.filename, '.edf loaded \n']);
fs = header.samplingrate;
% Load the desired channels
N = header.numtimeframes;
numChannels = length(params.channels);
y = zeros(numChannels, N);
for i = 1:numChannels
y(i,:) = data(params.channels(i),:);
end
% Clear expensive variables that are not required
clear data;
% Estimate the raw oscillations
fprintf('Starting mcsleep transient separation algorithm ...\n')
% Create H and HT transforms. See paper for details.
H = @(x,s,k) Op_A(x,s,k);
HT = @(x,s,k) Op_AT(x,s,k);
%Convert data for parfor
numEpochs = floor(N / (fs *30));
X = cell(numEpochs,1);
C = cell(numEpochs,1);
Y = cell(numEpochs,1);
% Segment input signal into cells
for i = 1:numEpochs
Y{i} = y(:, (i-1)*30*fs + 1: i*30*fs);
end
% No need to store the input signal twice
clear y;
tic
parfor i = 1:numEpochs
[X{i}, C{i}, ~] = mcsleep(Y{i}, H, HT, params);
end
toc
fprintf('Parallel execution done ... \n')
% Convert cells to full length signal
x = zeros(numChannels, N);
s = x;
y = s;
for i = 1:numEpochs
x(:, (i-1)*30*fs + 1:i*30*fs) = X{i};
s(:, (i-1)*30*fs + 1:i*30*fs) = C{i};
y(:, (i-1)*30*fs + 1:i*30*fs) = Y{i};
end
% Clear expensive variables that are not needed
clear X C Y;
% Apply bandpass filter to oscillatory component
fprintf('Applying bandpass filter to oscillatory component ... \n');
[B,A] = butter(params.filtOrder, [params.f1 params.f2]/(fs/2));
bandpassFiltered = filtfilt(B,A,s');
% Apply Teager Operator and get the envelope
fprintf('Evaluating envelope of bandpass filtered signal ... \n');
envelopeSpindle = T(mean(bandpassFiltered,2));
binary = envelopeSpindle > params.Threshold;
% Discard all spindles less than 0.5 seconds and larger than 3 seconds
fprintf('Discarding all spindles less than 0.5 seconds and larger than 3 seconds ... \n')
E = binary(2:end)-binary(1:end-1);
sise = size(binary);
begins = find(E==1)+1;
if binary(1) == 1
if sise(1) > 1
begins = [1; begins];
elseif sise(2) > 1
begins = [1 begins];
else
error('The input signal is not one dimensional')
end
elseif numel(begins) == 0 && binary(1) == 0
begins = NaN;
end
ends = find(E==-1);
if binary(end) == 1
if sise(1) > 1
ends = [ends; length(binary)];
elseif sise(2) > 1
ends = [ends length(binary)];
else
error('The input signal is not one dimensional')
end
elseif numel(ends) == 0 && binary(end) == 0
ends = NaN;
end
[binary,~,~] = minimum_duration(binary,begins,ends,0.5,fs);
[binary,~,~] = maximum_duration(binary,begins,ends,3,fs);
spindles = [0 binary];
fprintf('Spindle calculation done ... \n');
%% Functions from Warby et al. 2014 for discarding spindles
function [DD,begins,ends] = minimum_duration(DD,begins,ends,min_dur,fs)
% MINIMUM_DURATION - checks the sample duration of the spindles.
% Input is a vector containing ones in the interval where the spindle is
% and indexs describing the start and end of the spindle. The last two
% inputs are the minimum duration given in seconds and the sampling
% frequency given in Hz.
% Output is a vector containing ones in the interval where the spindle with
% duration longer than or equal to the minimum duration is and indexs
% describing the start and end of the spindle.
duration_samples = ends-begins+1;
for k = 1:length(begins)
if duration_samples(k) < min_dur*fs
DD(begins(k):ends(k)) = 0;
begins(k) = 0;
ends(k) = 0;
end
end
begins = begins(begins~=0);
ends = ends(ends~=0);
end
function [DD,begins,ends] = maximum_duration(DD,begins,ends,max_dur,fs)
% MAXIMUM_DURATION - checks the sample duration of the spindles.
% Input is a vector containing ones in the interval where the spindle is
% and indexs describing the start and end of the spindle. The last two
% inputs are the maximum duration given in seconds and the sampling
% frequency given in Hz.
% Output is a vector containing ones in the interval where the spindle with
% duration shorter than or equal to the maximum duration is and indexs
% describing the start and end of the spindle.
duration_samples = ends-begins+1;
for k = 1:length(begins)
if duration_samples(k) > max_dur*fs
DD(begins(k):ends(k)) = 0;
begins(k) = 0;
ends(k) = 0;
end
end
begins = begins(begins~=0);
ends = ends(ends~=0);
end
end