-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate.py
137 lines (109 loc) · 5.14 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Evaluation script for the DeepLab-ResNet network on the validation subset
of PASCAL VOC dataset.
This script evaluates the model on 1449 validation images.
"""
from __future__ import print_function
import argparse
from datetime import datetime
import os
import sys
import time
import tensorflow as tf
import numpy as np
from deeplab_resnet import DeepLabResNetModel, ImageReader, prepare_label, inv_preprocess, dense_crf
n_classes = 21
DATA_DIRECTORY = '/home/VOCdevkit'
DATA_LIST_PATH = './dataset/val.txt'
NUM_STEPS = 1449 # Number of images in the validation set.
RESTORE_FROM = './deeplab_resnet.ckpt'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Discovering Class Specific Pixels (DCSP) Evaluation Script.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of images in the validation set.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
return parser.parse_args()
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
# Create queue coordinator.
coord = tf.train.Coordinator()
# Load reader.
with tf.name_scope("create_inputs"):
reader = ImageReader(
args.data_dir,
args.data_list,
None, # No defined input size.
False, # No random scale.
False, # No random mirror.
coord)
image, label = reader.image, reader.label
image_batch, label_batch = tf.expand_dims(image, dim=0), tf.expand_dims(label, dim=0) # Add one batch dimension.
h_orig, w_orig = tf.to_float(tf.shape(image_batch)[1]), tf.to_float(tf.shape(image_batch)[2])
image_batch075 = tf.image.resize_images(image_batch, tf.stack([tf.to_int32(tf.multiply(h_orig, 0.75)), tf.to_int32(tf.multiply(w_orig, 0.75))]))
image_batch05 = tf.image.resize_images(image_batch, tf.stack([tf.to_int32(tf.multiply(h_orig, 0.5)), tf.to_int32(tf.multiply(w_orig, 0.5))]))
# Create network.
with tf.variable_scope('', reuse=False):
net = DeepLabResNetModel({'data': image_batch}, is_training=False)
with tf.variable_scope('', reuse=True):
net075 = DeepLabResNetModel({'data': image_batch075}, is_training=False)
with tf.variable_scope('', reuse=True):
net05 = DeepLabResNetModel({'data': image_batch05}, is_training=False)
# Which variables to load.
restore_var = tf.global_variables()
# Predictions.
raw_output100 = net.layers['fc1_voc12']
raw_output075 = tf.image.resize_images(net075.layers['fc1_voc12'], tf.shape(raw_output100)[1:3,])
raw_output05 = tf.image.resize_images(net05.layers['fc1_voc12'], tf.shape(raw_output100)[1:3,])
raw_output = tf.reduce_max(tf.stack([raw_output100, raw_output075, raw_output05]), axis=0)
raw_output = tf.image.resize_bilinear(raw_output, tf.shape(image_batch)[1:3,])
# CRF
inv_image = tf.py_func(inv_preprocess, [image_batch], tf.uint8)
raw_output = tf.py_func(dense_crf, [tf.nn.softmax(raw_output), inv_image], tf.float32)
raw_output = tf.argmax(raw_output, dimension=3)
pred = tf.expand_dims(raw_output, dim=3) # Create 4-d tensor.
# mIoU
pred = tf.reshape(pred, [-1,])
gt = tf.reshape(label_batch, [-1,])
weights = tf.cast(tf.less_equal(gt, n_classes - 1), tf.int32) # Ignoring all labels greater than or equal to n_classes.
mIoU, update_op = tf.contrib.metrics.streaming_mean_iou(pred, gt, num_classes=n_classes, weights=weights)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
sess.run(tf.local_variables_initializer())
# Load weights.
loader = tf.train.Saver(var_list=restore_var)
if args.restore_from is not None:
load(loader, sess, args.restore_from)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# Iterate over training steps.
for step in range(args.num_steps):
preds, _ = sess.run([pred, update_op])
if step % 100 == 0:
print('step {:d}'.format(step))
print('Mean IoU: {:.3f}'.format(mIoU.eval(session=sess)))
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()