-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
247 lines (217 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
"""
Given a training set of lat/lon as input and probability distribution over words as output, train a
model that can predict words based on location. Then try to visualise borders and regions (e.g.
try many lat/lon as input and get the probability of word yinz in the output and visualise that).
"""
import logging
import os
import sys
from os import path
import numpy as np
import tensorflow as tf
import config
import data
import embeddings
from models.BiLstmTextRelation import BiLstmTextRelation
from models.FastText import FastText
from models.HierarchicalAttention import HierarchicalAttention
from models.Seq2SeqAttn import Seq2SeqAttn
from models.TextCNN import TextCNN
from models.TextRCNN import TextRCNN
from models.TextRNN import TextRNN
filter_sizes = [1, 2, 3, 4, 5, 6, 7]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
# Model Evaluation
def do_eval(sess, model, evalX, evalY, batch_size):
number_examples = len(evalX)
for start1, end1 in zip(range(0, number_examples, batch_size), range(batch_size, number_examples, batch_size)):
if args.modelname == "FastText":
feed_dict1 = {model.input_x: evalX[start:end], model.input_y: evalY[start:end]}
else:
feed_dict1 = {model.input_x: evalX[start1:end1], model.dropout_keep_prob: 1}
feed_dict1[model.input_y] = evalY[start1:end1]
# curr_eval_acc--->model.accuracy
curr_eval_loss, logits, curr_eval_acc = sess.run([model.loss_val, model.logits,
model.accuracy], feed_dict1)
val_loss.append(curr_eval_loss)
val_acc.append(curr_eval_acc)
return np.mean(val_loss), np.mean(val_acc)
if __name__ == '__main__':
ckpt_dir = "ckpt_dir"
if not path.exists("./ckpt_dir"):
os.mkdir("./ckpt_dir")
# Parse Arguments
args = config.parse_args(sys.argv[1:])
datadir = args.dir
# Load data
dataset_name = 'cmu' if 'cmu' in datadir else 'na'
logging.info('dataset: %s' % dataset_name)
data = data.load_data(data_home=args.dir, encoding=args.encoding, mindf=args.mindf, dataset_name=dataset_name,
task=args.task)
trainX, trainY, devX, devY, testX, testY, trainU, devU, testU, labels = data
# Load embeddings
vocabulary_word2index, vocabulary_index2word = embeddings.create_vocabulary(
word2vec_model_path=args.word2vec_model_path, name_scope="cnn2") # simple='simple'
vocab_size = len(vocabulary_word2index)
logging.info("cnn_model.vocab_size: %s" % vocab_size)
# Training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
logging.info("Initializing model: %s" % args.modelname)
max_checks_without_progress = 10
checks_without_progress = 0
best_loss = np.infty
with tf.Session(config=config) as sess:
# Used to determine when to stop the training early
valid_loss_summary = []
stop_early = 0
if args.modelname == "TextCNN":
# Instantiate Text CNN Model
model = TextCNN(filter_sizes, num_filters=args.num_filters, num_classes=args.num_classes,
learning_rate=args.learning_rate, batch_size=args.batch_size, batchnorm=args.batchnorm,
decay_steps=args.decay_steps, decay_rate=args.decay_rate, sequence_length=args.sentence_len,
vocab_size=vocab_size, embed_size=args.embed_size, is_training=args.is_training,
is_classifier=args.is_classifier, optimizer=args.optimizer, clip_gradients=5.0,
decay_rate_big=0.5, initializer=tf.truncated_normal_initializer(stddev=0.1))
elif args.modelname == "TextRNN":
# Instantiate Text RNN Model
model = TextRNN(num_classes=args.num_classes, learning_rate=args.learning_rate, batch_size=args.batch_size,
decay_steps=args.decay_steps, decay_rate=args.decay_rate,
sequence_length=args.sentence_len, vocab_size=vocab_size, embed_size=args.embed_size,
is_training=args.is_training, batchnorm=args.batchnorm, is_classifier=args.is_classifier,
optimizer=args.optimizer, initializer=tf.random_normal_initializer(stddev=0.1))
elif args.modelname == "TextRCNN":
# Instantiate Text RCNN Model
model = TextRCNN(num_classes=args.num_classes, learning_rate=args.learning_rate, batch_size=args.batch_size,
decay_steps=args.decay_steps, decay_rate=args.decay_rate,
sequence_length=args.sentence_len, vocab_size=vocab_size, embed_size=args.embed_size,
is_training=args.is_training, is_classifier=args.is_classifier, optimizer=args.optimizer,
batch_norm=args.batchnorm, initializer=tf.random_normal_initializer(stddev=0.1))
elif args.modelname == "FastText":
# Instantiate FastText Model
model = FastText(num_classes=args.num_classes, learning_rate=args.learning_rate, batch_size=args.batch_size,
decay_steps=args.decay_steps, decay_rate=args.decay_rate, num_sampled=20,
sequence_length=args.sentence_len, vocab_size=vocab_size, embed_size=args.embed_size,
is_training=args.is_training, batchnorm=args.batchnorm, is_classifier=args.is_classifier,
optimizer=args.optimizer)
elif args.modelname == "Seq2SeqAttn":
# Instantiate Seq2SeqAttn Model
model = Seq2SeqAttn(num_classes=args.num_classes, learning_rate=args.learning_rate,
batch_size=args.batch_size, decay_steps=args.decay_steps, decay_rate=args.decay_rate,
sequence_length=args.sentence_len, vocab_size=vocab_size, embed_size=args.embed_size,
hidden_size=args.hidden, is_training=args.is_training,
is_classifier=args.is_classifier, optimizer=args.optimizer,
decoder_sent_length=args.num_classes,
initializer=tf.random_normal_initializer(stddev=0.1),
clip_gradients=5.0, l2_lambda=0.0001)
elif args.modelname == "BiLstmTextRelation":
# Instantiate BiLstmTextRelation Model
model = BiLstmTextRelation(num_classes=args.num_classes, learning_rate=args.learning_rate,
batch_size=args.batch_size, decay_steps=args.decay_steps,
decay_rate=args.decay_rate, sequence_length=args.sentence_len,
vocab_size=vocab_size, embed_size=args.embed_size, is_training=args.is_training,
is_classifier=args.is_classifier, optimizer=args.optimizer,
initializer=tf.random_normal_initializer(stddev=0.1))
elif args.modelname == "HierarchicalAttention":
# Instantiate HierarchicalAttention
model = HierarchicalAttention(num_classes=args.num_classes, learning_rate=args.learning_rate,
batch_size=args.batch_size, decay_steps=args.decay_steps,
decay_rate=args.decay_rate, sequence_length=args.sentence_len,
num_sentences=5, vocab_size=vocab_size, embed_size=args.embed_size,
hidden_size=args.hidden, is_training=args.is_training,
is_classifier=args.is_classifier, optimizer=args.optimizer,
need_sentence_level_attention_encoder_flag=True,
initializer=tf.random_normal_initializer(stddev=0.1), clip_gradients=5.0)
else:
# Instantiate default TextCNN Model -- default
model = TextCNN(filter_sizes, num_filters=args.num_filters, num_classes=args.num_classes,
learning_rate=args.learning_rate, batch_size=args.batch_size, batchnorm=args.batchnorm,
decay_steps=args.decay_steps, decay_rate=args.decay_rate, sequence_length=args.sentence_len,
vocab_size=vocab_size, embed_size=args.embed_size, is_training=args.is_training,
is_classifier=args.is_classifier, optimizer=args.optimizer, clip_gradients=5.0,
decay_rate_big=0.5, initializer=tf.random_normal_initializer(stddev=0.1))
# Initialize Saver
saver = tf.train.Saver()
if os.path.exists(ckpt_dir + "checkpoint"):
print("Restoring Variables from Checkpoint")
saver.restore(sess, tf.train.latest_checkpoint(ckpt_dir))
else:
print('Initializing Variables')
sess.run(tf.global_variables_initializer())
# load pre-trained word embedding
if args.use_embedding:
embeddings.assign_pretrained_word_embedding(sess, args, vocabulary_index2word, vocab_size,
model, word2vec_model_path=args.word2vec_model_path)
curr_epoch = sess.run(model.epoch_step)
# 3. Feed data & Train
number_of_training_data = len(trainX)
print("Feed data and Train")
batch_size = args.batch_size
for epoch in range(curr_epoch, args.num_epochs):
# Record progress with each epoch
train_loss = []
train_acc = []
val_acc = []
val_loss = []
loss, acc, counter = 0.0, 0.0, 0
for start, end in zip(range(0, number_of_training_data, batch_size),
range(batch_size, number_of_training_data, batch_size)):
if args.modelname == "FastText":
feed_dict = {model.input_x: trainX[start:end], model.input_y: trainY[start:end]}
else:
feed_dict = {model.input_x: trainX[start:end], model.dropout_keep_prob: 0.5}
feed_dict[model.input_y] = trainY[start:end]
# curr_acc--->model.accuracy
curr_loss, curr_acc, _ = sess.run([model.loss_val, model.accuracy, model.train_op], feed_dict)
loss, counter, acc = loss + curr_loss, counter + 1, acc + curr_acc
# Record the loss and accuracy of each training
train_loss.append(loss)
train_acc.append(acc)
if counter % 50 == 0:
if args.is_classifier:
# Train Accuracy:%.4f acc/float(counter)
print("Epoch %d\tCounter %d\tTrain Loss:%.4f\tTrain Accuracy:%.4f" %
(epoch, counter, loss / float(counter), acc / float(counter)))
else:
print("Epoch %d\tCounter %d\tTrain Loss:%.4f" % (epoch, counter, loss / float(counter)))
# epoch increment
logging.info("Incrementing epoch counter....")
sess.run(model.epoch_increment)
# Average the training loss and accuracy of each epoch
avg_train_loss = np.mean(train_loss)
avg_train_acc = np.mean(train_acc)
# 4.validation
logging.info("Evaluating on Dev set ....")
avg_valid_loss, avg_valid_acc = do_eval(sess, model, devX, devY, batch_size)
valid_loss_summary.append(avg_valid_loss)
if args.is_classifier:
# Print the progress of each epoch
print("Epoch: {}/{}".format(epoch, args.num_epochs), "Dev Loss: {:.4f}".format(avg_valid_loss),
"Dev Acc: {:.4f}".format(avg_valid_acc))
else:
# Print the progress of each epoch
print("Epoch: {}/{}".format(epoch, args.num_epochs), "Dev Loss: {:.4f}".format(avg_valid_loss))
if args.earlystop:
if avg_valid_loss < best_loss:
save_path = ckpt_dir + "/model.ckpt"
logging.info("Saving model to checkpoint to %s" % save_path)
saver.save(sess, save_path, global_step=epoch)
best_loss = avg_valid_loss
checks_without_progress = 0
else:
checks_without_progress += 1
if checks_without_progress > max_checks_without_progress:
print("Early stopping!")
break
else:
logging.info("Not using early stopping")
# 5. Test
logging.info("Running Test ....")
test_loss, test_acc = do_eval(sess, model, testX, testY, batch_size)
if args.is_classifier:
print("Test Loss: {:.4f}".format(test_loss), "Test Accuracy: {:.4f}".format(test_acc))
else:
print("Test Loss: {:.4f}".format(test_loss))
pass