-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmultimodal_understanding.py
57 lines (47 loc) · 1.7 KB
/
multimodal_understanding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
from PIL import Image
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
from transformers.generation.configuration_utils import GenerationConfig
import torch
from emu3.mllm.processing_emu3 import Emu3Processor
# model path
EMU_HUB = "BAAI/Emu3-Chat"
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
# prepare model and processor
model = AutoModelForCausalLM.from_pretrained(
EMU_HUB,
device_map="cuda:0",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
# prepare input
text = ["Please describe the image", "Please describe the image"]
image = Image.open("assets/demo.png")
image = [image, image]
inputs = processor(
text=text,
image=image,
mode='U',
padding_image=True,
padding="longest",
return_tensors="pt",
)
# prepare hyper parameters
GENERATION_CONFIG = GenerationConfig(pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id)
# generate
outputs = model.generate(
inputs.input_ids.to("cuda:0"),
GENERATION_CONFIG,
max_new_tokens=1024,
attention_mask=inputs.attention_mask.to("cuda:0"),
)
outputs = outputs[:, inputs.input_ids.shape[-1]:]
answers = processor.batch_decode(outputs, skip_special_tokens=True)
for ans in answers:
print(ans)