-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsali_encode.py
339 lines (228 loc) · 10.9 KB
/
sali_encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
'''
MIT License
Copyright (c) [2020] [Duin BAEK]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os
import cv2
import numpy as np
import pandas as pd
import multiprocessing
from saliency_update import *
def rotate_img(img, iteration = 1):
#0: remain same, +n: rotate left in 90*n degree, -n: rotate right in 90*n degree (some part of img is sliced off)
if len(img.shape) == 3:
height, width, _ = img.shape
else:
height, width = img.shape
rotated_img = np.zeros(img.shape, dtype = np.uint8)
if iteration == -1:
for idx in range(height):
rotated_img[:, height-1-idx] = img[idx, :]
elif iteration == 1:
for idx in range(height):
rotated_img[:, idx] = np.flip(img[idx, :], axis = 0)
elif iteration == 0:
rotated_img = img
else:
for idx in range(height):
rotated_img[height-1-idx, :] = np.flip(img[idx, :], axis = 0)
return rotated_img
def frame_split(frame):
#return a list of screens in an order of right, left, up, down, front and back
if len(frame.shape) == 3:
height, width, _ = frame.shape
else:
height, width = frame.shape
unit_height = int(height / 2)
unit_width = int(width / 3)
#1st layer
right_frame = frame[:unit_height, :unit_width]
left_frame = frame[:unit_height, unit_width:2*unit_width]
up_frame = frame[:unit_height, 2*unit_width:]
#2nd layer
down_frame = frame[unit_height:, :unit_width]
front_frame = frame[unit_height:, unit_width:2*unit_width]
back_frame = frame[unit_height:, 2*unit_width:]
return [right_frame, left_frame, up_frame, down_frame, front_frame, back_frame]
def trapezoid_1(img): # starting from small frame / 2 + 2
if len(img.shape) == 3:
row, col, channel = img.shape
else:
row, col = img.shape
channel = 1
empty_pallete = np.zeros((row, col, channel), dtype = np.uint8)
for idx in range(int(row / 4)):
layer = cv2.resize(img[idx*4:(idx+1)*4, :], (int(row/2) + 2 + 2*idx,1))
_, length, _ = layer.shape
empty_pallete[idx, int(row/4)-1-idx: int(row/4)-1-idx + length, : ] = layer
#cv2.imshow('original', img[idx*4:(idx+1)*4, :])
#cv2.imshow('resized', layer)
#cv2.imshow('pallete', empty_pallete)
#cv2.waitKey(0)
return empty_pallete #shape of row, col, channel (1024, 1024, 3)
def trapezoid_2(img): # starting from small frame / 2
if len(img.shape) == 3:
row, col, channel = img.shape
else:
row, col = img.shape
channel = 1
empty_pallete = np.zeros((row, col, channel), dtype = np.uint8)
for idx in range(int(row / 4)):
layer = cv2.resize(img[idx*4:(idx+1)*4, :], (int(row/2) + 2*idx,1))
_, length, _ = layer.shape
empty_pallete[idx, int(row/4)-idx: int(row/4)-idx + length, : ] = layer
return empty_pallete #shape of row, col, channel (1024, 1024, 3)
def pyramid_b_encoding(img):
#[right_frame, left_frame, up_frame, down_frame, front_frame, back_frame]
split_img = frame_split(img)
row, col, channel = split_img[0].shape
pallete = np.zeros((row, col, channel), dtype = np.uint8)
#right: rotate left once and trapezoid_1 and rotate right, indexing from the right
#left: rotate right once and trapezoid_1 and rotate left, indexing from the left
#up: rotate none and trapezoid_2 rotate twice, indexing from the bottom
#down: rotate twice and trapezoid_2, indexing from the top
right_img = split_img[0]
right_img = rotate_img(right_img, iteration = 1)
right_trapezoid = trapezoid_1(right_img)
right_trapezoid = rotate_img(right_trapezoid, iteration = -1)
left_img = split_img[1]
left_img = rotate_img(left_img, iteration = -1)
left_trapezoid = trapezoid_1(left_img)
left_trapezoid = rotate_img(left_trapezoid, iteration = 1)
up_img = split_img[2]
up_trapezoid = trapezoid_2(up_img)
up_trapezoid = rotate_img(up_trapezoid, iteration = 2)
down_img = split_img[3]
down_img = rotate_img(down_img, iteration = 2)
down_trapezoid = trapezoid_2(down_img)
front_img = split_img[4]
back_img = split_img[5]
back_img = cv2.resize(back_img, None, fx = 0.5, fy = 0.5)
height, width, _ = back_img.shape
pallete[:, :int(col/4), :] = np.maximum(pallete[:, :int(col/4), :], right_trapezoid[:, -int(col/4):, :]) #right
pallete[:, -int(col/4):, :] = np.maximum(pallete[:, -int(col/4):, :], left_trapezoid[:, :int(col/4), :]) #left
pallete[:int(row/4), :, :] = np.maximum(pallete[:int(row/4), :, :], up_trapezoid[-int(row/4):, :, :]) #up
pallete[-int(row/4):, :, :] = np.maximum(pallete[-int(row/4):, :, :], down_trapezoid[:int(row/4), :, :]) #down
pallete[int(row/4):int(row/4)+height, int(col/4):int(col/4)+width, :] = back_img
pyra_c_frame = np.concatenate([front_img, pallete], axis = 1)
return pyra_c_frame
def frame_split_1(frame):
#return a list of screens in an order of right, left, up, down, front and back
if len(frame.shape) == 3:
height, width, _ = frame.shape
else:
height, width = frame.shape
unit_height = int(height / 2)
unit_width = int(width / 3)
#1st layer
right_frame = frame[:unit_height, :unit_width]
left_frame = frame[:unit_height, unit_width:2*unit_width]
up_frame = frame[:unit_height, 2*unit_width:]
#2nd layer
down_frame = frame[unit_height:, :unit_width]
front_frame = frame[unit_height:, unit_width:2*unit_width]
back_frame = frame[unit_height:, 2*unit_width:]
return [right_frame, left_frame, up_frame, down_frame, front_frame, back_frame]
def json_sort_by_name(y_p_combo_path):
json_file_list = np.array(os.listdir(y_p_combo_path))
idx_list = [int(json_file.split('.')[0].split('_')[-1]) for json_file in json_file_list]
sorted_idx_list = np.argsort(idx_list)
sorted_json_file_list = json_file_list[sorted_idx_list]
return sorted_json_file_list
def json_path_generate(path, j2f_ratio):
json_path_list = []
sorted_json_file_list = json_sort_by_name(path)
for json_file in sorted_json_file_list:
for _ in range(j2f_ratio):
json_path_list.append(os.path.join(path, json_file))
return np.array(json_path_list).ravel()
def saliency_patching(cube_frame, json_path, frame_idx, fps, duration_unit, salient_patch_size, num_col):
frame_height, frame_width, _ = cube_frame.shape
side_length = int(frame_width / 3)
window_size = int(side_length / salient_patch_size) #in the paper, salient_region_rate is set to 4
name2idx = np.array(['R', 'L', 'U', 'D', 'F', 'B'])
split_img = frame_split_1(cube_frame) #[right_frame, left_frame, up_frame, down_frame, front_frame, back_frame]
json_data = saliency_score_update(json_path, frame_idx, fps, duration_unit)
json_keys = np.array(list(json_data.keys()))
sorted_json_idx = np.argsort([int(key) for key in json_keys])
json_keys = json_keys[sorted_json_idx]
img_cluster =[]
layer_img = []
threshold = 0
#newly added
num_row = 0
'''#should change tar_row to change the number of salient patches to be used.'''
tar_row = salient_patch_size
for key in json_keys:
img = split_img[np.where(name2idx == json_data[key]['name'])[0][0]][int(json_data[key]['row']): int(json_data[key]['row']) + window_size, int(json_data[key]['column']): int(json_data[key]['column']) + int(json_data[key]['width'])]
layer_img.append(img)
threshold += int(json_data[key]['width'])
#print(threshold)
if threshold == num_col*window_size:
img_cluster.append(np.concatenate(layer_img, axis = 1))
threshold = 0
layer_img = []
num_row += 1
#print(num_row)
if num_row == tar_row:
break
out_img = np.concatenate(img_cluster, axis = 0)
return out_img
def encode(cube_frame, json_path, frame_idx, fps, duration_unit, salient_patch_size, num_col):
pyra = pyramid_b_encoding(cube_frame)
sali = saliency_patching(cube_frame, json_path, frame_idx, fps, duration_unit, salient_patch_size, num_col)
result = np.concatenate([pyra, sali], axis = 1)
return result
num_col = 2
j2f_ratio = 10
salient_patch_size = 4
cube_base_path = 'video/segments/cube'
json_base_path = 'json'
write_base_path = 'video/segments/sali_encoded'
fourcc = cv2.VideoWriter_fourcc(*'X264')
for y_p_combo in os.listdir(cube_base_path):
y_p_combo_path = os.path.join(cube_base_path, y_p_combo)
y_p_json_path = os.path.join(json_base_path, y_p_combo)
y_p_result_path = os.path.join(write_base_path, y_p_combo)
for duration in os.listdir(y_p_combo_path):
duration_path = os.path.join(y_p_combo_path, duration)
duration_json_path = os.path.join(y_p_json_path, duration)
duration_result_path = os.path.join(y_p_result_path, duration)
if not os.path.exists(duration_result_path):
os.makedirs(duration_result_path)
for file_name in sorted(os.listdir(duration_path)):
file_path = os.path.join(duration_path, file_name)
result_path = os.path.join(duration_result_path, file_name)
json_path = json_path_generate(duration_json_path, j2f_ratio)
capture = cv2.VideoCapture(file_path)
fps = round(capture.get(cv2.CAP_PROP_FPS))
frame_idx = 0
while(capture.isOpened()):
retval, frame = capture.read()
if retval == True:
encoded = encode(frame, json_path[frame_idx], frame_idx, fps, duration, salient_patch_size, num_col)
if frame_idx == 0:
frame_height, frame_width, _ = encoded.shape
writer = cv2.VideoWriter(result_path, fourcc, fps, (frame_width, frame_height))
writer.write(encoded)
frame_idx += 1
else:
break
capture.release()
writer.release()
#end