-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsaliency_union.py
570 lines (410 loc) · 24.8 KB
/
saliency_union.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
'''
MIT License
Copyright (c) [2020] [Duin BAEK]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os
import cv2
import numpy as np
from saliency_extraction import *
def img_concatenate(img_sequence, img_order, axis = 0):
img = []
for idx in img_order:
img.append(img_sequence[idx])
return np.concatenate(img, axis = axis), img_sequence[2], img_sequence[3]
def img_split(img, axis = 0):
#split axis: 0(row-based), 1(column-based)
if len(img.shape) == 3:
height, width, _ = img.shape
else:
height, width = img.shape
row_axis = int(height / 2)
column_axis = int(width / 2)
if axis == 0:
return img[:row_axis, :], img[row_axis:, :]
elif axis == 1:
return img[:, :column_axis], img[:, column_axis:]
else:
return img[:row_axis, :], img[row_axis:, :], img[:, :column_axis], img[:, column_axis:]
def rotate_img(img, iteration = 1):
#0: remain same, +n: rotate left in 90*n degree, -n: rotate right in 90*n degree (some part of img is sliced off)
if len(img.shape) == 3:
height, width, _ = img.shape
else:
height, width = img.shape
rotated_img = np.zeros(img.shape, dtype = np.uint8)
if iteration == -1:
for idx in range(height):
rotated_img[:, height-1-idx] = img[idx, :]
elif iteration == 1:
for idx in range(height):
rotated_img[:, idx] = np.flip(img[idx, :], axis = 0)
elif iteration == 0:
rotated_img = img
else:
for idx in range(height):
rotated_img[height-1-idx, :] = np.flip(img[idx, :], axis = 0)
return rotated_img
def inverse(list):
return [-item for item in list]
def frame_split(frame):
#return a list of screens in an order of right, left, up, down, front and back
if len(frame.shape) == 3:
height, width, _ = frame.shape
else:
height, width = frame.shape
unit_height = int(height / 2)
unit_width = int(width / 3)
#1st layer
right_frame = frame[:unit_height, :unit_width]
left_frame = frame[:unit_height, unit_width:2*unit_width]
up_frame = frame[:unit_height, 2*unit_width:]
#2nd layer
down_frame = frame[unit_height:, :unit_width]
front_frame = frame[unit_height:, unit_width:2*unit_width]
back_frame = frame[unit_height:, 2*unit_width:]
return [right_frame, left_frame, up_frame, down_frame, front_frame, back_frame]
def cube_img_concatenate(img_sequence, img_order, up_rotation_list, down_rotation_list):
img, up_img, down_img = img_concatenate(img_sequence, img_order, axis = 1)
for idx in range(len(up_rotation_list)):
if idx == 0:
rotated_up_img = rotate_img(up_img, iteration = up_rotation_list[idx])
rotated_down_img = rotate_img(down_img, iteration = down_rotation_list[idx])
else:
rotated_up_img = np.concatenate((rotated_up_img, rotate_img(up_img, iteration = up_rotation_list[idx])), axis = 1)
rotated_down_img = np.concatenate((rotated_down_img, rotate_img(down_img, iteration = down_rotation_list[idx])), axis = 1)
#after testing, using half-size of horizontally split rotated_up, and down img turned out to produce more human-like saliency map
if len(rotated_up_img.shape) == 3:
height, width, _ = rotated_up_img.shape
else:
height, width = rotated_up_img.shape
flattened_up_img = rotated_up_img[int(height/2):, :]
flattened_down_img = rotated_down_img[:int(height/2), :]
flattened_cube_img = np.concatenate([flattened_up_img, img, flattened_down_img], axis = 0)
#flattened_cube_img = np.concatenate([rotated_up_img, img, rotated_down_img], axis = 0)
return flattened_cube_img
def up_down_saliency_union(flattened_cube_saliency, up_saliency, down_saliency, up_rotation_list, down_rotation_list):
inverse_up_rotation_list = inverse(up_rotation_list)
inverse_down_rotation_list = inverse(down_rotation_list)
height, width = flattened_cube_saliency.shape
flattened_up_saliency = flattened_cube_saliency[:int(height/4), :]
flattened_down_saliency = flattened_cube_saliency[-int(height/4):, :]
#saliency_union for up and down side
for idx in range(len(inverse_up_rotation_list)):
up_input_img = np.zeros(up_saliency.shape)
down_input_img = np.zeros(up_saliency.shape)
up_input_img[-int(height/4):, :] = flattened_up_saliency[:, int(width/len(inverse_up_rotation_list))*idx:int(width/len(inverse_up_rotation_list))*(idx+1)]
down_input_img[:int(height/4):, :] = flattened_down_saliency[:, int(width/len(inverse_up_rotation_list))*idx:int(width/len(inverse_up_rotation_list))*(idx+1)]
up_rotated_img = rotate_img(up_input_img, inverse_up_rotation_list[idx])
down_rotated_img = rotate_img(down_input_img, inverse_down_rotation_list[idx])
up_saliency[np.logical_or(up_saliency, up_rotated_img)] = np.maximum(up_saliency[np.logical_or(up_saliency, up_rotated_img)], up_rotated_img[np.logical_or(up_saliency, up_rotated_img)])
down_saliency[np.logical_or(down_saliency, down_rotated_img)] = np.maximum(down_saliency[np.logical_or(down_saliency, down_rotated_img)], down_rotated_img[np.logical_or(down_saliency, down_rotated_img)])
return up_saliency, down_saliency
def argsort(input_list):
#ascending order (sorted() is also in an ascending order)
return sorted(range(len(input_list)), key = input_list.__getitem__)
def dist(point_1, point_2):
return np.sqrt((point_1[0] - point_2[0])**2 + (point_1[1] - point_2[1])**2)
def boundary(row, col, row_idx, col_idx, window_size):
#up boundary
if row_idx - window_size < 0:
up_boundary = 0
else:
up_boundary = row_idx - window_size
#down boundary
if row_idx + window_size > row - 1:
down_boundary = row
else:
down_boundary = row_idx + window_size + 1
#left boundary
if col_idx - window_size < 0:
left_boundary = 0
else:
left_boundary = col_idx - window_size
#right boundary
if col_idx + window_size > col - 1:
right_boundary = col
else:
right_boundary = col_idx + window_size + 1
return up_boundary, down_boundary, left_boundary, right_boundary
def find_max_salient_regions(matrix, sub_square_num, window_size):
row, col = matrix.shape #1024 x 1024*5
side_length = int(col / 5)
cen_row, cen_col = row / 2, col / 2
column_sum_matrix = np.zeros((row - window_size + 1, col))
row_sum_matrix = np.zeros((row - window_size + 1, col - window_size + 1, 3))
dist_matrix = np.zeros((row - window_size + 1, col - window_size + 1))
for col_idx in range(col):
column_sum = 0
for row_idx in range(window_size):
column_sum += int(matrix[row_idx, col_idx])
column_sum_matrix[0, col_idx] = column_sum
for row_idx in range(1, row - window_size + 1):
column_sum += int(matrix[row_idx + window_size - 1, col_idx]) - int(matrix[row_idx - 1, col_idx])
column_sum_matrix[row_idx, col_idx] = column_sum
for row_idx in range(row - window_size + 1):
row_sum = 0
for col_idx in range(window_size):
row_sum += int(column_sum_matrix[row_idx, col_idx])
row_sum_matrix[row_idx, 0, :] = [row_idx, 0, row_sum]
dist_matrix[row_idx, 0] = dist([row_idx, 0], [cen_row, cen_col])
for col_idx in range(1, col - window_size + 1):
row_sum += int(column_sum_matrix[row_idx, col_idx + window_size - 1]) - int(column_sum_matrix[row_idx, col_idx - 1])
row_sum_matrix[row_idx, col_idx] = [row_idx, col_idx, row_sum]
dist_matrix[row_idx, col_idx] = dist([row_idx, col_idx], [cen_row, cen_col])
#it would be better to nullify the saliency value in the front view in the saliency map itself
row_sum_matrix[:, int(2*side_length - window_size):int(3*side_length), 2] = 0
global dist_max, row_sum_max
dist_max = dist_matrix.max()
row_sum_max = row_sum_matrix.max()
#---------------------------------------------------------------------------------------------------------------------------------------------------------------
#need to modify this line:
row_sum_matrix[:, :, 2] = (row_sum_matrix[:, :, 2] / row_sum_max)# * (dist_matrix / dist_max)
#---------------------------------------------------------------------------------------------------------------------------------------------------------------
max_sum_list = []
max_sum_coordinate = []
row, col, _ = row_sum_matrix.shape
for idx in range(sub_square_num):
max_row = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[0][0]
max_col = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[1][0]
max_sum = row_sum_matrix[max_row, max_col, 2]
max_coordinate = [max_row, max_col]
max_sum_list.append(max_sum)
max_sum_coordinate.append(max_coordinate)
up_boundary, down_boundary, left_boundary, right_boundary = boundary(row, col, max_row, max_col, window_size)
#within the boundary, leave out the row_sum_matrix elements whose distance to max_coordinate is less than the window_size
for row_coord in range(up_boundary, down_boundary):
for col_coord in range(left_boundary, right_boundary):
if dist(max_coordinate, [row_coord, col_coord]) < window_size:
row_sum_matrix[row_coord, col_coord, 2] = 0
#print(row_sum_matrix[:int(side_length/ 2), int(1.5*side_length):int(3*side_length), 2])
return max_sum_list, max_sum_coordinate
def up_down_salient_region(matrix, sub_square_num, window_size):
row, col = matrix.shape
cen_row, cen_col = row + int(row / 2), int(col / 2)
column_sum_matrix = np.zeros((row - window_size + 1, col))
row_sum_matrix = np.zeros((row - window_size + 1, col - window_size + 1, 3))
dist_matrix = np.zeros((row - window_size + 1, col - window_size + 1))
for col_idx in range(col):
column_sum = 0
for row_idx in range(window_size):
column_sum += int(matrix[row_idx, col_idx])
column_sum_matrix[0, col_idx] = column_sum
for row_idx in range(1, row - window_size + 1):
column_sum += int(matrix[row_idx + window_size - 1, col_idx]) - int(matrix[row_idx - 1, col_idx])
column_sum_matrix[row_idx, col_idx] = column_sum
for row_idx in range(row - window_size + 1):
row_sum = 0
for col_idx in range(window_size):
row_sum += int(column_sum_matrix[row_idx, col_idx])
row_sum_matrix[row_idx, 0, :] = [row_idx, 0, row_sum]
dist_matrix[row_idx, 0] = dist([row_idx, 0], [cen_row, cen_col])
for col_idx in range(1, col - window_size + 1):
row_sum += int(column_sum_matrix[row_idx, col_idx + window_size - 1]) - int(column_sum_matrix[row_idx, col_idx - 1])
row_sum_matrix[row_idx, col_idx] = [row_idx, col_idx, row_sum]
dist_matrix[row_idx, col_idx] = dist([row_idx, col_idx], [cen_row, cen_col])
#dist_max = dist_matrix.max() #using global variable, we can unify the scale of distance and row_sum
#row_sum_max = row_sum_matrix.max()
#print(dist_max, row_sum_max)
row_sum_matrix[:, :, 2] = (row_sum_matrix[:, :, 2] / row_sum_max) * (dist_matrix / dist_max)
max_sum_list = []
max_sum_coordinate = []
row, col, _ = row_sum_matrix.shape
for idx in range(sub_square_num):
max_row = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[0][0]
max_col = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[1][0]
max_sum = row_sum_matrix[max_row, max_col, 2]
max_coordinate = [max_row, max_col]
max_sum_list.append(max_sum)
max_sum_coordinate.append(max_coordinate)
up_boundary, down_boundary, left_boundary, right_boundary = boundary(row, col, max_row, max_col, window_size)
#within the boundary, leave out the row_sum_matrix elements whose distance to max_coordinate is less than the window_size
for row_coord in range(up_boundary, down_boundary):
for col_coord in range(left_boundary, right_boundary):
if dist(max_coordinate, [row_coord, col_coord]) < window_size:
row_sum_matrix[row_coord, col_coord, 2] = 0
return max_sum_list, max_sum_coordinate
#max_row = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[0][0]
#max_col = np.where(row_sum_matrix[:,:, 2] == row_sum_matrix[:,:, 2].max())[1][0]
#max_sum = row_sum_matrix[max_row, max_col, 2]
#max_coordinate = [max_row, max_col]
#return max_sum, max_coordinate
def region_name(coordinate_list, boundary_value_list, boundary_name_list, side_length, window_size):
for idx in range(len(boundary_name_list)):
#target name done
if boundary_value_list[idx] <= coordinate_list[1] < boundary_value_list[idx + 1]:
target_region = boundary_name_list[idx]
target_address = idx
target_row = coordinate_list[0]
target_column = coordinate_list[1] % side_length
condition = target_column + window_size > side_length - 1
if condition: #when a region spans over two sequent small frames
if target_address < len(boundary_name_list) - 1:
next_region = boundary_name_list[target_address + 1]
else:
next_region = boundary_name_list[1]
next_row = coordinate_list[0]
next_column = 0
target_width = side_length - target_column#(coordinate_list[1] % side_length)
next_width = window_size - target_width
#print(target_region, target_address, target_row, target_column, target_width, next_region, next_row, next_column, next_width)
return [target_region, next_region], [target_row, next_row], [target_column, next_column], [target_width, next_width]
else:
target_width = window_size
#print([target_region], [target_row], [target_column], [target_width])
return [target_region], [target_row], [target_column], [target_width]
def salient_region_selection(img_sequence, max_sum_list, max_sum_coordinate_list, up_sum_list, up_coordinate_list, down_sum_list, down_coordinate_list, flattened_front_view, flattened_front_view_saliency, num_selected_regions):
dictionary = {}
for coordinate, max_sum in zip(max_sum_coordinate_list, max_sum_list):
dictionary[max_sum] = {'F' : coordinate}
# cv2.imshow('img', matrix[coordinate[0]: coordinate[0] + window_size, coordinate[1]: coordinate[1] + window_size])
# cv2.waitKey(0)
for up_coordinate, up_sum in zip(up_coordinate_list, up_sum_list):
dictionary[up_sum] = {'U': up_coordinate}
# cv2.imshow('img', up_saliency[up_coordinate[0]: up_coordinate[0] + window_size, up_coordinate[1]: up_coordinate[1] + window_size])
# cv2.waitKey(0)
for down_coordinate, down_sum in zip(down_coordinate_list, down_sum_list):
dictionary[down_sum] = {'D': down_coordinate}
# cv2.imshow('img', down_saliency[down_coordinate[0]: down_coordinate[0] + window_size, down_coordinate[1]: down_coordinate[1] + window_size])
# cv2.waitKey(0)
#max_sum_list vs up_sum_list vs down_sum_list sorting needed
#keys of the dictionary is the max_sum value
sorted_by_max_sum_list = sorted(dictionary) #keys sorted in an ascending order
selected_regions = {}
#newly added-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if num_selected_regions > len(sorted_by_max_sum_list):
num_selected_regions = len(sorted_by_max_sum_list)
#newly added-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
for idx in range(1, num_selected_regions + 1):
selected_regions[sorted_by_max_sum_list[-idx]] = dictionary[sorted_by_max_sum_list[-idx]]
#print(selected_regions)
row, col = flattened_front_view_saliency.shape
num_small_frames = 5
side_length = int(col / num_small_frames)
window_size = int(side_length / 4)
#############################################salient_patch_size_ratio
boundary_value_list = np.array([side_length*idx for idx in range(num_small_frames + 1)])
boundary_name_list = ['B', 'L', 'F', 'R', 'B']
encoding_info = {}
segment_list = []
order = 0
#
keys_saliency = []
values_region_info = []
for key, value in selected_regions.items():
keys_saliency.append(key)
values_region_info.append(value)
keys_saliency = np.array(keys_saliency)
values_region_info = np.array(values_region_info)
desending_sorted_keys_saliency_idx = keys_saliency.argsort()[::-1]
sorted_keys = keys_saliency[desending_sorted_keys_saliency_idx]
sorted_values = values_region_info[desending_sorted_keys_saliency_idx]
#
for key, value in zip(sorted_keys, sorted_values):
#ex) selected_regions = {100: {'F': [100, 200]}, 200: {'D':[200, 300]}}
#up or down이면 이름, 좌표는 별도로 생각할 필요 없이 그대로 유지하면 된다.
#print(key, value)
if 'U' in list(value.keys()):
up_view = img_sequence[2]
coordinate = list(value.values())[0]
print(coordinate)
print(up_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size].shape)
segment_list.append(up_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size])
encoding_info[order] = {"row": str(list(value.values())[0][0]), "column": str(list(value.values())[0][1]), "width": str(window_size), "name": str(list(value.keys())[0]), "saliency": str(key)}
order += 1
elif 'D' in list(value.keys()):
down_view = img_sequence[3]
coordinate = list(value.values())[0]
print(coordinate)
print(down_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size].shape)
segment_list.append(down_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size])
encoding_info[order] = {"row": str(list(value.values())[0][0]), "column": str(list(value.values())[0][1]), "width": str(window_size), "name": str(list(value.keys())[0]), "saliency": str(key)}
order += 1
else:
coordinate = list(value.values())[0]
print(coordinate)
print(flattened_front_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size].shape)
segment_list.append(flattened_front_view[coordinate[0]:coordinate[0]+window_size, coordinate[1]:coordinate[1]+window_size])
region, row, col, width = region_name(list(value.values())[0], boundary_value_list, boundary_name_list, side_length, window_size)
for seg in range(len(region)):
encoding_info[order] = {"row": str(row[seg]), "column": str(col[seg]), "width": str(width[seg]), "name": str(region[seg]), "saliency": str(key)}
order += 1
out_img = []
img_layer = []
row_sum = 0
for idx in range(len(segment_list)):
_, col, _ = segment_list[idx].shape
print(segment_list[idx].shape)
row_sum += col
img_layer.append(segment_list[idx])
if row_sum == side_length:
out_img.append(np.concatenate(img_layer, axis = 1))
img_layer = []
row_sum = 0
out_img = np.concatenate(out_img, axis = 0)
return out_img, encoding_info
def saliency_encoder(img, front_sub_square_num, up_sub_square_num, down_sub_square_num, num_selected_regions, resize_ratio, salient_patch_size, output):
#split the cube frame into each small frame
img_sequence = frame_split(img) #return small frames in the following order of 'frame_order'
frame_order = ['right', 'left', 'up', 'down', 'front', 'back']
height, width, _ = img_sequence[0].shape
#extract the salienc maps of up-frame and down-frame
#rbd, up_saliency = saliency_3(img_sequence[2])
up_saliency, binary_up_saliency = saliency_3(cv2.resize(img_sequence[2], None, fx = 1/resize_ratio, fy = 1/resize_ratio))
down_saliency, binary_down_saliency = saliency_3(cv2.resize(img_sequence[3], None, fx = 1/resize_ratio, fy = 1/resize_ratio))
#newly added
#back_saliency, binary_back_saliency = saliency_3(cv2.resize(img_sequence[-1], None, fx = 1/resize_ratio, fy = 1/resize_ratio))
#suppose no need to give heavy weight on the back side
up_saliency, binary_up_saliency = cv2.resize(up_saliency, None, fx = resize_ratio, fy = resize_ratio), cv2.resize(binary_up_saliency, None, fx = resize_ratio, fy = resize_ratio)
down_saliency, binary_down_saliency = cv2.resize(down_saliency, None, fx = resize_ratio, fy = resize_ratio), cv2.resize(binary_down_saliency, None, fx = resize_ratio, fy = resize_ratio)
#newly added
#back_saliency, binary_back_saliency = cv2.resize(back_saliency, None, fx = resize_ratio, fy = resize_ratio), cv2.resize(binary_back_saliency, None, fx = resize_ratio, fy = resize_ratio)
#parameters
img_order = [5, 1, 4, 0, 5] #align small frames in an order of ['back', 'left', 'front', 'right', 'back'] to make 360-front view
up_rotation_list = [2, 1, 0, -1, -2] #rotation directions of up-frame
down_rotation_list = [-2, -1, 0, 1, 2] #rotation directions of down-frame
#make flattened cube frame
flattened_cube_img = cube_img_concatenate(img_sequence, img_order, up_rotation_list, down_rotation_list)
#let's extract the saliency map from the flattened cube frame
#rbd, flattened_cube_saliency = saliency_3(flattened_cube_img)
flattened_cube_saliency, binary_flattened_cube_saliency = saliency_3(cv2.resize(flattened_cube_img.copy(), None, fx = 1/resize_ratio, fy = 1/resize_ratio))
flattened_cube_saliency, binary_flattened_cube_saliency = cv2.resize(flattened_cube_saliency, None, fx = resize_ratio, fy = resize_ratio), cv2.resize(binary_flattened_cube_saliency, None, fx = resize_ratio, fy = resize_ratio)
flattened_front_view_saliency = flattened_cube_saliency[int(height/2):-int(height/2),:]
flattened_front_view = flattened_cube_img[int(height/2):-int(height/2),:]
#saliency union for up- and down-frame
up_saliency, down_saliency = up_down_saliency_union(flattened_cube_saliency, up_saliency, down_saliency, up_rotation_list, down_rotation_list)
#saliency_union map for front, left, back, and right
row, col = flattened_front_view_saliency.shape
window_size = int(row / salient_patch_size)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!salient_patch_size_ratio!!!!!!!!!!!!!!!!!!!!!!!!!!!
#slice the 4 most salient regions in inter-connected front-left-rigth-back frame
max_sum_list, max_sum_coordinate_list = find_max_salient_regions(flattened_front_view_saliency, front_sub_square_num, window_size)
#slice the most salient regions in up- and down-side
up_sum_list, up_coordinate_list = up_down_salient_region(up_saliency, up_sub_square_num, window_size)
down_sum_list, down_coordinate_list = up_down_salient_region(down_saliency, down_sub_square_num, window_size)
#salient regions selection
out_img, encoding_info = salient_region_selection(img_sequence, max_sum_list, max_sum_coordinate_list, up_sum_list, up_coordinate_list, down_sum_list, down_coordinate_list, flattened_front_view, flattened_front_view_saliency, num_selected_regions)
output.put((out_img, encoding_info))
#return out_img, encoding_info
def saliency_update(saliency_map, original_saliency_map, reverse_img_order):
if len(saliency_map.shape) == 3:
height, width, _ = saliency_map.shape
else:
height, width = saliency_map.shape
for idx, img_order in enumerate(reverse_img_order):
original_saliency_map[:, img_order*height:(img_order+1)*height] = np.maximum(saliency_map[:, idx*height:(idx+1)*height], original_saliency_map[:, img_order*height:(img_order+1)*height])
return original_saliency_map