-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlocal_illumination_change.py
128 lines (95 loc) · 4.81 KB
/
local_illumination_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import cv2
import numpy as np
import scipy.sparse.linalg
from PIL import Image
import matplotlib.pyplot as plt
from argparse import ArgumentParser
import utils
class PoissonIlluminationChanger:
def __init__(self, dataset_root, solver):
self.mask = utils.read_image(f"{dataset_root}", "mask", scale=1, gray=True)
self.src_rgb = utils.read_image(f"{dataset_root}", "source", scale=1, gray=False)
self.solver = getattr(scipy.sparse.linalg, solver)
self.img_h, self.img_w = self.mask.shape
_, self.mask = cv2.threshold(self.mask, 0.5, 1, cv2.THRESH_BINARY) # fix here
self.inner_mask, self.boundary_mask = utils.process_mask(self.mask)
self.pixel_ids = utils.get_pixel_ids(self.mask)
self.inner_ids = utils.get_masked_values(self.pixel_ids, self.inner_mask).flatten()
self.boundary_ids = utils.get_masked_values(self.pixel_ids, self.boundary_mask).flatten()
self.mask_ids = utils.get_masked_values(self.pixel_ids, self.mask).flatten() # boundary + inner
self.inner_pos = np.searchsorted(self.mask_ids, self.inner_ids)
self.boundary_pos = np.searchsorted(self.mask_ids, self.boundary_ids)
self.mask_pos = np.searchsorted(self.pixel_ids.flatten(), self.mask_ids)
self.A = self.construct_A_matrix()
def construct_A_matrix(self):
A = scipy.sparse.lil_matrix((len(self.mask_ids), len(self.mask_ids)))
n1_pos = np.searchsorted(self.mask_ids, self.inner_ids - 1)
n2_pos = np.searchsorted(self.mask_ids, self.inner_ids + 1)
n3_pos = np.searchsorted(self.mask_ids, self.inner_ids - self.img_w )
n4_pos = np.searchsorted(self.mask_ids, self.inner_ids + self.img_w)
A[self.inner_pos, n1_pos] = 1
A[self.inner_pos, n2_pos] = 1
A[self.inner_pos, n3_pos] = 1
A[self.inner_pos, n4_pos] = 1
A[self.inner_pos, self.inner_pos] = -4
A[self.boundary_pos, self.boundary_pos] = 1
return A.tocsr()
def construct_b(self, inner_gradient_values, boundary_pixel_values):
b = np.zeros(len(self.mask_ids))
b[self.inner_pos] = inner_gradient_values
b[self.boundary_pos] = boundary_pixel_values
return b
def compute_gradients(self, src):
Ix, Iy = utils.compute_gradient(src)
I = np.sqrt(Ix**2 + Iy**2) # gradient norm
alpha = 0.2 * I.mean()
beta = 0.2
Ix = np.power(alpha, beta) * np.power(I + 1e-8, -beta) * Ix
Iy = np.power(alpha, beta) * np.power(I + 1e-8, -beta) * Iy
Ixx, _ = utils.compute_gradient(Ix, forward=False)
_, Iyy = utils.compute_gradient(Iy, forward=False)
return Ixx + Iyy
def poisson_illum_change_channel(self, src):
log_src = np.log(src + 1e-8)
log_gradients = self.compute_gradients(log_src)
boundary_pixel_values = utils.get_masked_values(log_src, self.boundary_mask).flatten()
inner_gradient_values = utils.get_masked_values(log_gradients, self.inner_mask).flatten()
# Construct b
b = self.construct_b(inner_gradient_values, boundary_pixel_values)
# Solve Ax = b
x = self.solver(self.A, b)
if isinstance(x, tuple): # solvers other than spsolve
x = x[0]
new_log_src = np.log(np.zeros_like(src).flatten() + 1e-8)
new_log_src[self.mask_pos] = x
new_log_src = new_log_src.reshape(src.shape)
new_src = np.exp(new_log_src)
img = utils.get_alpha_blended_img(new_src, src, self.mask)
img = np.clip(img, 0, 1)
return img
def poisson_illum_change_rgb(self):
poisson_illum_changed_img_rgb = []
for i in range(self.src_rgb.shape[-1]):
poisson_illum_changed_img_rgb.append(
self.poisson_illum_change_channel(self.src_rgb[..., i])
)
return np.dstack(poisson_illum_changed_img_rgb)
def poisson_illum_change_gray(self):
src_gray = utils.rgb2gray(self.src_rgb)
target_gray = utils.rgb2gray(self.target_rgb)
return self.poisson_illum_change_channel(src_gray)
if __name__ == "__main__":
import time
parser = ArgumentParser()
parser.add_argument("--data_dir", type=str, required=True, help="Folder of mask, source, and target image files.")
parser.add_argument("--grayscale", action="store_true", help="Convert input to grayscale images.")
parser.add_argument("--solver", type=str, default="spsolve", help="Linear system solver.")
args = parser.parse_args()
changer = PoissonIlluminationChanger(args.data_dir, args.solver)
if args.grayscale:
img = changer.poisson_illum_change_gray()
else:
img = changer.poisson_illum_change_rgb()
img = (img * 255).astype(np.uint8)
Image.fromarray(img).save(os.path.join(args.data_dir, "result.png"))