forked from mmuratardag/AC_ArdagOneyCohrs_2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_Bayesian_networks.R
119 lines (99 loc) · 6.03 KB
/
07_Bayesian_networks.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
load("data/ISSP_NI_M23_comp_redu_comb.RData")
library(tidyverse)
richer <- dat %>% filter(GDPPPP == ">med")
richer <- as.data.frame(richer)
groups = c("national identification",
"conceptions of nationhood", "conceptions of nationhood", "conceptions of nationhood",
"out-group orientations", "out-group orientations", "out-group orientations",
"conceptions of nationhood",
"national identification", "national identification",
"out-group orientations",
"national identification")
richer_ggm <- bootnet::estimateNetwork(richer[,12:23], default = "EBICglasso", tuning = 0.5, missing = "pairwise", threshold = T, lambda.min.ratio=0.01)
richer_lo <- plot(richer_ggm, layout = "spring",
groups = groups, legend = F, maximum = 1, edge.labels = T, edge.label.cex = 1,
palette = "ggplot2", theme = "colorblind",
details = T, title = "Richer Countries | Bidirectional Relationships")
richer_ggm[["graph"]]
blacklist_richer <- readxl::read_excel("data/from_to_blacklist_richer.xlsx")
library(parallel)
cl <- makeCluster(7)
library(bnlearn)
set.seed(123)
bootnet_rich <- boot.strength(data = richer[,12:23], R = 1000, algorithm = "tabu", algorithm.args = c(blacklist = blacklist_richer), cluster = cl)
avgnet_rich_threshold <- averaged.network(bootnet_rich, threshold = 0.95)
boottab_rich <- bootnet_rich[bootnet_rich$strength > 0.95 & bootnet_rich$direction > 0.50, ]
astr_rich <- boottab_rich
astr_rich$strength <- astr_rich$direction
strength.plot(avgnet_rich_threshold, astr_rich, shape = "ellipse", main = "Bayesian Network of the richer countries")
rich_igraph <- bnviewer::bn.to.igraph(avgnet_rich_threshold)
library(igraph)
E(rich_igraph)$weight <- astr_rich$strength
sort(degree(rich_igraph, mode = "in"), decreasing = T)
# outcomes
# Pbs clC CoO fel Pbi lng rsp ImA sNP ntv ShC dNP
# 7 6 6 5 5 3 3 3 2 1 0 0
sort(degree(rich_igraph, mode = "out"), decreasing = T)
# causes
# ShC ntv dNP sNP ImA lng CoO rsp fel Pbs clC Pbi
# 7 7 7 5 4 3 3 2 2 1 0 0
par(mfrow=c(1,3))
plot(richer_ggm, layout = richer_lo[["layout.orig"]], label.cex = 2,
groups = groups, legend = F, maximum = 1, edge.labels = F,
palette = "ggplot2", theme = "colorblind",
details = F, title = "(A) Richer Countries | Bidirectional Relationships")
qgraph::qgraph(avgnet_rich_threshold, vTrans = 200, layout = richer_lo[["layout.orig"]],
vsize = (degree(rich_igraph, mode = "out")*2),
esize = (E(rich_igraph)$weight)*3, edge.width = 2,
groups = groups, palette = "ggplot2", theme = "colorblind", details = F, legend = F,
label.cex = 2, title = "(B) Richer Countries | Outgoing Centrality | Central Causes")
qgraph::qgraph(avgnet_rich_threshold, vTrans = 200, layout = richer_lo[["layout.orig"]],
vsize = (degree(rich_igraph, mode = "in")*2),
esize = (E(rich_igraph)$weight)*3, edge.width = 2,
groups = groups, palette = "ggplot2", theme = "colorblind", details = F, legend = F,
label.cex = 2, title = "(C) Richer Countries | Incoming Centrality | Central Outcomes")
dev.off()
gdata::keep(list = c("dat", "groups", "richer_lo", "astr_rich", "cl"), sure = T)
poorer <- dat %>% filter(GDPPPP == "<med")
poorer <- as.data.frame(poorer)
poorer_ggm <- bootnet::estimateNetwork(poorer[,12:23], default = "EBICglasso", tuning = 0.5, missing = "pairwise", threshold = T, lambda.min.ratio=0.01)
poorer_lo <- plot(poorer_ggm, layout = richer_lo[["layout.orig"]],
groups = groups, legend = F, maximum = 1, edge.labels = T, edge.label.cex = 1,
palette = "ggplot2", theme = "colorblind",
details = T, title = "Poorer Countries | Bidirectional Relationships")
poorer_ggm[["graph"]]
blacklist_poorer <- readxl::read_excel("data/from_to_blacklist_poorer.xlsx")
set.seed(321)
bootnet_poor <- boot.strength(data = poorer[,12:23], R = 1000, algorithm = "tabu", algorithm.args = c(blacklist = blacklist_poorer), cluster = cl)
avgnet_poor_threshold <- averaged.network(bootnet_poor, threshold = 0.95)
boottab_poor <- bootnet_poor[bootnet_poor$strength > 0.95 & bootnet_poor$direction > 0.50, ]
astr_poor <- boottab_poor
astr_poor$strength <- astr_poor$direction
strength.plot(avgnet_poor_threshold, astr_poor, shape = "ellipse", main = "Bayesian Network of the Poorer Countries")
rio::export(list(astr_poor = astr_poor[,1:3],
astr_rich = astr_rich[,1:3]), file = "data/BayesianN_archs.xlsx")
poor_igraph <- bnviewer::bn.to.igraph(avgnet_poor_threshold)
E(poor_igraph)$weight <- astr_poor$strength
sort(degree(poor_igraph, mode = "in"), decreasing = T)
# dNP clC sNP ImA lng ShC rsp Pbi Pbs fel CoO ntv
# 8 7 7 5 4 4 3 3 2 1 1 0
sort(degree(poor_igraph, mode = "out"), decreasing = T)
# CoO fel ntv rsp Pbs lng ShC Pbi dNP ImA sNP clC
# 8 7 7 5 5 3 3 2 2 2 1 0
par(mfrow=c(1,3))
plot(poorer_ggm, layout = richer_lo[["layout.orig"]],
groups = groups, legend = F, maximum = 1, edge.labels = F,
palette = "ggplot2", theme = "colorblind",
details = F, title = "(A) Poorer Countries | Bidirectional Relationships")
qgraph::qgraph(avgnet_poor_threshold, vTrans = 200, layout = richer_lo[["layout.orig"]],
vsize = (degree(poor_igraph, mode = "out")*2),
esize = (E(poor_igraph)$weight)*3, edge.width = 2,
groups = groups, palette = "ggplot2", theme = "colorblind", details = F, legend = F,
label.cex = 2, title = "(B) Poorer Countries | Outgoing Centrality | Central Causes")
qgraph::qgraph(avgnet_poor_threshold, vTrans = 200, layout = richer_lo[["layout.orig"]],
vsize = (degree(poor_igraph, mode = "in")*2),
esize = (E(poor_igraph)$weight)*3, edge.width = 2,
groups = groups, palette = "ggplot2", theme = "colorblind", details = F, legend = F,
label.cex = 2, title = "(C) Poorer Countries | Incoming Centrality | Central Outcomes")
dev.off()
stopCluster(cl)